Technical Report

Title:	Mineralogical and Lithogeochemical Analyses of DGR-5 and DGR-6 Core
Document ID:	TR-09-06
Authors:	Richard Jackson and Samantha Murphy
Revision:	0
Date:	April 11, 2011

DGR Site Characterization Document Geofirma Engineering Project 08-200

Geofirma Engineering DGR Site Characterization Document					
Title:	Mineralogical and Lithogeochemical Analyses of DGR-5 and DGR-6 Core				
Document ID:	TR-09-06				
Revision Number:	0	Date: April 11, 2011			
Authors:	Richard Jackson and Samantha Murphy				
Technical Review	Kenneth Raven; Laura Kenn	ell (NWMO)			
QA Review:	John Avis				
Approved by:	Kenneth Raven				

Document Revision History					
Revision	Effective Date	Description of Changes			
0	April 11, 2011	Initial release			

TABLE OF CONTENTS

1	INTRODUCTION	1
2	BACKGROUND	1
3	METHODS	2
	3.1 Sample Preparation	2
	3.2 Geochemical Analysis	2
	3.3 X-ray Powder Diffraction Analysis	3
	3.4 SEM/EMPA	4
4	RESULTS	4
	4.1 Geochemical Analysis	4
	4.2 Mineralogy by XRD	4
	4.3 SEM/EMPA	17
5	DATA QUALITY AND USE	19
6	CONCLUSIONS	19
7	REFERENCES	20

LIST OF TABLES

Table 1	Depths, Formations, Descriptions and Analyses of DGR-5 Core Samples	2
Table 2	Depths, Formations, Descriptions and Analyses of DGR-6 Core Samples	3
Table 3	DGR-5 Whole Rock Analysis	5
Table 4	DGR-6 Whole Rock Analysis	6
Table 5	DGR-5 Elemental Geochemistry	7
Table 6	DGR-6 Elemental Geochemistry	9
Table 7	Summary of XRD Qualitative Analysis, Mineral Identification for DGR-5 Core Samples	11
Table 8	Summary of XRD Qualitative Analysis, Mineral Identification for DGR-6 Core Samples	12
Table 9	Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-5	
	Core Samples	13
Table 10	Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-6	
	Core Samples	15
Table 11	Summary of SEM/EMPA Observations of DGR-5 Core Samples	17
Table 12	Summary of SEM/EMPA Observations of DGR-6 Core Samples	18

LIST OF APPENDICES

APPENDIX A	SGS Report on SEM-EDS and XRD Mineralogy of DGR-5 Samples
APPENDIX B	SGS Report on SEM-EDS and XRD Mineralogy of DGR-6 Samples

1 Introduction

Geofirma Engineering Ltd. (formally Intera Engineering Ltd.) has been contracted by the Nuclear Waste Management Organization (NWMO) on behalf of Ontario Power Generation to implement the Geoscientific Site Characterization Plan (GSCP) for the Bruce nuclear site located near Tiverton, Ontario. The purpose of this site characterization work is to assess the suitability of the Paleozoic rocks beneath the Bruce nuclear site for the construction of a Deep Geologic Repository (DGR) to store low-level and intermediate-level radioactive waste. The GSCP is described by Intera Engineering Ltd. (2006, 2008).

As part of Phase 2B of the GSCP, Intera retained SGS Lakefield Research Ltd. (SGS) of Lakefield, Ontario to complete mineralogical and lithogeochemical testing of cores collected from boreholes DGR-5 and DGR-6. This report summarizes the results of those analyses of the core samples, quantifying the minerals present in the cores by X-ray diffraction (XRD) and by identifying the morphology and geochemical properties of most of these mineral specimens by Scanning Electron Microscopy (SEM) coupled with an X-ray spectrometer. SEM and X-ray spectrometry provides results equivalent to that from Electron Microprobe Analysis (EMPA), which is used to determine elemental compositions of the core specimen on the basis of the emitted x-ray spectra.

Work described in this Technical Report (TR) was completed in accordance with Test Plan TP-09-10 – Laboratory Testing of DGR-5 and DGR-6 Solid Core for Geochemistry and Mineralogy (Intera Engineering Ltd., 2009a), which was prepared following the general requirements of the DGR Project Quality Plan (Intera Engineering Ltd., 2009b).

2 Background

Core samples of 76 and 83 mm diameter were collected during diamond coring of boreholes DGR-5 and DGR-6, respectively, at the Bruce nuclear site from September 2009 until February 2010. Core samples were collected, preserved and handled as per the general preservation and handling requirements of TP-09-02 (Intera Engineering Ltd., 2010a). All core samples were vacuum sealed within nitrogen-flushed polyethylene and aluminum foil/polyethylene bags following core retrieval. Eighteen preserved core samples from boreholes DGR-5 (10) and DGR-6 (8) were shipped to SGS Lakefield, Ontario under chain of custody procedures (following procedure DGR P4).

At SGS a section of each of the 18 core samples was cut and sent to Dr. Eva Schandl, of GeoConsult, Toronto, Ontario, for petrographic analysis using optical microscopy and electron microprobe analysis, the results of which are presented in TR-09-05 (Intera Engineering Ltd., 2010b). SGS completed whole rock analysis (oxides), Loss-On-Ignition (LOI), total carbon (C-total), total organic carbon (C-organic)) and XRD analysis on all 18 samples to determine minerals and concentrations. SGS analysed the core samples for 54 trace elements by SEM, EMPA and ICP-MS/OES as well as total chloride (CI-total), CO₂, and total sulphur (S-total). Clay mineralogy by XRD on shale samples from DGR-3 and DGR-4 was undertaken at Core Labs in Houston, Texas as part of an organic geochemical analysis program as reported in TR-08-29 (Intera Engineering Ltd., 2009c).

The objectives of this study were:

- 1. to estimate, where possible, the percentage of major minerals present by XRD;
- 2. to measure the elemental composition of the specimens by ICP-MS;
- 3. to identify soluble minerals, such as halite, gypsum, anhydrite and celestite, by SEM/EMPA; and
- 4. to image the morphology of the grains and pores present in the cores by SEM.

Tables 1 and 2 list samples collected from DGR-5 and DGR-6, respectively, for analysis at SGS. Because these were inclined boreholes, the Intera sample identifier is based on depth in metres length below ground surface (mLBGS). The analyses performed are described below in Section 3.

Intera Sample ID	Formation	Sample Description	Analyses
DGR5-583.40	Georgian Bay	Grey calcareous siltstone and shale	XRD; SEM/EMPA; Geochem
DGR5-605.55	Georgian Bay	Green-grey calcareous shale with halite vein	XRD; SEM/EMPA; Geochem
DGR5-645.16	Georgian Bay	Grey calcareous shale	XRD; SEM/EMPA; Geochem
DGR5-677.25	Blue Mountain	Grey shale	XRD; SEM/EMPA; Geochem
DGR5-692.35	Blue Mountain	Dark grey shale	XRD; SEM/EMPA; Geochem
DGR5-699.49	Blue Mountain	Dark grey shale	XRD; SEM/EMPA; Geochem
DGR5-704.99	Cobourg - Collingwood Member	Brown-grey fossiliferous limestone	XRD; SEM/EMPA; Geochem
DGR5-715.40	Cobourg – Lower Member	Grey fossiliferous, argillaceous limestone	XRD; SEM/EMPA; Geochem
DGR5-725.33	Cobourg – Lower Member	Grey fossiliferous, argillaceous limestone	XRD; SEM/EMPA; Geochem
DGR5-764.72	Sherman Fall	Grey argillaceous limestone with shale	XRD; SEM/EMPA; Geochem

Table 1Depths, Formations, Descriptions and Analyses of DGR-5 Core Samples

3 Methods

3.1 Sample Preparation

A polished section was prepared (dry preparation) from a slice cut from of each of the 18 core samples selected for SEM/EMPA analysis. Representative sub-samples were split after grinding a homogeneous cut slice to a powder for XRD and chemical analysis from all core samples.

3.2 Geochemical Analysis

The cores underwent a lithogeochemical analysis that included measurement of 12 oxides (Whole Rock Analysis), loss-on-ignition (LOI), total CI, total S, CO_2 -total, C-total, C-organic and elemental geochemistry (54 elements). These analyses are identified in Tables 1 and 2 as "Geochem".

The core samples were prepared by fusion and then the oxides were analysed by wavelength dispersive X-ray fluorescence spectrometry. Major cations and several minor elements – Al, Ba, Be, Ca, Cu, Fe, K, Li, Mg, Mn, P, Sr, Ti, V and Zn – were analysed by ICP-Optical Emission Spectrometry. Trace elements were analysed by ICP-MS. U, Th, Rb and Gd were measured to determine background radioactivity. These were analysed using a strong acid digestion that was followed by measurement using ICP-MS. The precision of ICP measurements varies with the method detection limit (MDL): at the MDL, the precision is \pm 100%; at 10x MDL, it is \pm 15-20%; and at 100x MDL, it is \pm 5%.

			•
Intera Sample ID	Formation	Sample Description	Analyses
DGR6-654.58	Georgian Bay	Grey calcareous shale and minor siltstone	XRD; SEM/EMPA; Geochem
DGR6-664.31	Georgian Bay	Dark grey shale	XRD; SEM/EMPA; Geochem
DGR6-697.67	Blue Mountain	Dark green-grey shale	XRD; SEM/EMPA; Geochem
DGR6-717.97	Blue Mountain	Dark green-grey shale	XRD; SEM/EMPA; Geochem
DGR6-735.40	Blue Mountain	Dark grey shale	XRD; SEM/EMPA; Geochem
DGR6-750.80	Cobourg – Lower Member	Grey fossiliferous, argillaceous limestone	XRD; SEM/EMPA; Geochem
DGR6-761.76	Cobourg – Lower Member	Grey fossiliferous, argillaceous limestone	XRD; SEM/EMPA; Geochem
DGR6-768.58	Cobourg – Lower Member	Grey fossiliferous, argillaceous limestone	XRD; SEM/EMPA; Geochem

 Table 2
 Depths, Formations, Descriptions and Analyses of DGR-6 Core Samples

Combustion with infrared analysis was used to analyse carbon and sulphur directly using an Horiba C,S analyzer with an inductive furnace heated to 1500°C. Organic carbon was then determined indirectly on samples after combustion of the organic material in an oven at 550°C. Wet chemical analysis followed by ion chromatography was used for total chloride, and coulometry was used for carbon dioxide. Loss-on-ignition was determined gravimetrically at 1000°C and is included in the matrix-correction calculations, which are performed by the XRF instrument software.

3.3 X-ray Powder Diffraction Analysis

A sub-sample was prepared after selecting a homogeneous part of the core and then grinding a cut slice for XRD from each of the 18 core samples. The slice was pulverized and a pressed mount of the powder was prepared. X-ray diffraction was by a Bruker AXS D8 diffractometer. Manual and computer-assisted search/match identification of minerals used JCPDS-International Centre for Diffraction Data files. The instrument was calibrated using a quartz standard; however the results must be considered semi-quantitative with a detection limit of 0.5-2% for any particular mineral but this is very strongly dependent on its crystallinity.

The precise identification of clay minerals via XRD is difficult due to their extremely fine-grained nature and because the clay minerals illite, montmorillonite (smectites) and vermiculite are structurally related to micas and thus have similar properties (see SGS Report, Testwork Summary, Section 2, in Appendix A). Reliable identification can only be achieved by a combination of geochemical, XRD and differential thermal analyses; only the first two were undertaken thus identification is somewhat constrained. Therefore, where mica alone is reported in SGS summary of analytical results, one or more of muscovite, hydromuscovite, glauconite, illite or biotite may be present. As such, all clay minerals identified by SGS during XRD analysis, these being, mica, muscovite, clinochlore (chlorite), glauconite and palygorskite are grouped together and reported as "sheet silicates" for the purposes of this report. Also, the dioctahedral clay mineral including illite, muscovite, hydromuscovite and glauconite are indistinguishable in most conventional XRD analyses and for convenience, if detected within the shale-rich rocks, should likely be considered as illite, the clay mineral predominately reported for these rocks. The detailed reporting of individual clay mineral contents by SGS is provided in Appendix A and B of this technical Report. A detailed examination of clay mineralogy was also conducted by Core Labs in Houston, Texas as part of an organic geochemical analysis program (TR-08-29, Intera Engineering Ltd., 2009c).

3.4 <u>SEM/EMPA</u>

A polished section was prepared (dry preparation) for each of the select 18 core samples and was systematically scanned under an SEM with energy dispersive spectra (EDS) for analysis of soluble minerals, e.g., halite, gypsum, anhydrite and celestite, and of grain and pore morphology. Grains were mounted on an adhesive carbon disc on a glass slide and inserted into the SEM, a Tescan Vega II SEM with Oxford Inca EDS/WDS system. The system is not a stand-alone electron microprobe, but rather an SEM with a fitted X-ray spectrometer, which provides the same capability as separate EMPA and SEM instruments (Reed, 2005). The technique employed is hereafter referred to in this report as SEM/EMPA.

4 Results

4.1 Geochemical Analysis

Tables 3 and 4 present the whole rock analyses of DGR-5 and DGR-6 core samples, respectively. These present the oxides measured by the Whole Rock Analysis, Loss-On-Ignition (LOI), total carbon (C-total) and total organic carbon (C-organic) analyses in weight percent (%). Tables 5 and 6 present the elemental geochemistry in parts per million (ppm) along with total chloride (CI), CO₂ and sulphur (S-total) in weight %. The complete SGS reports, including the laboratory certificates for geochemical analyses, for both boreholes are contained in Appendices A (DGR-5) and B (DGR-6).

4.2 Mineralogy by XRD

Tables 7 and 8 present the qualitative mineral identification results for DGR-5 and DGR-6 core samples, respectively, and Tables 9 and 10 present the semi-quantitative mineral identification results for the same samples. Both are reported in weight percent (wt %). Appendices A (DGR-5) and B (DGR-6) contain SGS summary of qualitative and semi-quantitative X-ray diffraction results as well as the diffractograms.

With respect to DGR-5, three samples from each of the Georgian Bay Formation shale and the Blue Mountain Formation shale, three from the Cobourg Formation (including one from the upper Collingwood Member) and one from the Sherman Fall Formation were tested by XRD. The Georgian Bay Formation samples (DGR5-583.40; DGR5-605.55; DGR5-645.16) indicate silicate rocks composed of quartz, sheet silicates and K-feldspar with minor carbonate minerals (calcite and ankerite). Core Labs (TR-08-29, Intera Engineering Ltd., 2009c) identified the sheet silicates as being illite and mica in their analysis of shale samples from DGR-3 and DGR-4. The amount of halite decreased with depth in these three samples from 2.2 (DGR5-583.40) to 0.5 wt %. The Blue Mountain Formation, represented by DGR5-677.25, DGR5-692.35 and DGR5-699.49, contained quartz, sheet silicates, and potassium feldspar in the largest amounts, while pyrite and halite were detectable in trace quantities. The Middle Ordovician limestone samples were predominantly calcite (80-90%) with the remainder being silicates such as quartz, mica, K-feldspar and chlorite.

With respect to DGR-6, the shales and limestone samples were more homogeneous as rock types than the DGR-5 samples. Both Georgian Bay and Blue Mountain shales were predominantly composed of sheet silicates and quartz that together comprise 70 wt%. Minor amounts of K-feldspar, plagioclase and carbonates minerals comprise most of the balance. The only soluble mineral detected was halite at 0.2 - 1.0 wt %. Pyrite was typically 2-3 wt %. The three Cobourg Formation samples (DGR6-750.80, 761.76, 768.58) contained 75 - 80 wt % calcite with the balance comprised of ankerite, dolomite, quartz, sheet silicates and K-feldspar.

Sample Number	DGR5- 583.40	DGR5- 605.55	DGR5- 645.16	DGR5- 677.25	DGR5- 692.35	DGR5- 699.49	DGR5- 704.99	DGR5- 715.40	DGR5- 725.33	DGR5- 764.72
Oxides (%)										
SiO ₂	60.5	54.1	57.0	56.4	53.2	55.4	4.15	9.83	6.56	6.08
Al ₂ O ₃	6.69	17.0	16.6	15.5	16.1	16.6	1.16	2.72	1.70	1.78
Fe ₂ O ₃	3.31	6.79	6.47	6.56	6.64	6.47	0.55	0.95	0.64	0.76
MgO	3.15	3.55	3.23	3.11	2.92	2.96	0.75	2.30	1.43	1.12
CaO	8.65	1.93	1.25	2.69	4.09	2.09	51.6	44.8	48.8	49.3
Na ₂ O	1.14	0.58	0.63	0.94	0.50	0.52	0.08	0.10	0.08	0.09
K ₂ O	3.29	5.31	4.94	4.44	4.66	4.86	0.42	1.11	0.72	0.73
TiO ₂	0.41	0.88	0.91	0.85	0.85	0.91	0.06	0.13	0.07	0.06
P ₂ 0 ₅	0.13	0.20	0.23	0.14	0.33	0.31	0.18	0.07	0.05	0.04
MnO	0.10	0.06	0.04	0.05	0.05	0.04	< 0.01	0.03	0.02	< 0.01
Cr ₂ O ₃	0.01	0.02	0.01	0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01
V ₂ O ₅	0.01	0.03	0.03	0.03	0.03	0.03	< 0.01	< 0.01	< 0.01	< 0.01
Other Parameters (%)										
Loss on Ignition	12.4	8.71	7.78	8.69	9.76	8.33	40.3	37.3	39.3	39.1

Sample Number	DGR6- 654.58	DGR6- 664.31	DGR6- 697.67	DGR6- 717.97	DGR6- 735.40	DGR6- 750.80	DGR6- 761.76	DGR6- 768.58
Oxides (%)								
SiO ₂	52.9	53.4	55.9	55.5	53.3	6.03	9.21	7.79
Al ₂ O ₃	16.0	15.6	15.8	16.2	15.9	1.48	2.62	1.97
Fe ₂ O ₃	6.78	6.88	6.45	6.99	6.78	0.83	0.89	0.77
MgO	3.68	3.44	3.09	3.06	3.30	2.47	1.91	1.73
CaO	3.34	3.45	2.19	2.47	4.34	47.9	45.1	47.2
Na ₂ O	0.42	0.50	0.88	0.49	0.43	0.06	0.08	0.08
K ₂ O	4.93	4.72	4.70	4.77	4.74	0.61	1.06	0.86
TiO ₂	0.86	0.84	0.89	0.92	0.86	0.07	0.13	0.10
P ₂ 0 ₅	0.21	0.28	0.16	0.21	0.36	0.06	0.08	0.05
MnO	0.10	0.10	0.07	0.08	0.08	0.06	0.03	0.03
Cr ₂ O ₃	0.01	0.01	0.02	0.01	0.01	< 0.01	< 0.01	< 0.01
V_2O_5	0.02	0.02	0.02	0.02	0.02	< 0.01	< 0.01	< 0.01
Other Parameters (%)								
Loss on Ignition	9.43	9.10	8.49	8.51	9.80	40.3	38.0	39.0

Table 4	DGR-6 Whole Rock Analysis
---------	---------------------------

							-			
Sample	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-	DGR5-
Number	583.40	605.55	645.16	677.25	692.35	699.49	704.99	715.40	725.33	764.72
Other										
Parameters										
(%)										
CI	1.37	0.9	0.69	0.93	0.52	0.4	0.03	0.1	0.07	0.07
C-total	2.62	0.512	0.519	0.922	1.61	1.72	10.9	9.95	10.4	10.4
C-organic	0.123	0.111	0.28	0.335	0.812	1.38	1.98	0.502	0.142	0.308
CO ₂	9.46	1.51	0.97	2.39	3.21	1.62	39.5	35.9	37.9	38
S-total	0.056	0.111	0.6	0.768	1.04	0.998	0.192	0.122	0.127	0.207
Elemental										
Geochemistry										
(nnm)										
	0.22	< 0.01	0.03	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
AU	33000	12000	86000	80000	< 0.01 81000	< 0.01 85000	5800	14000	< 0.01 8400	< 0.01 9100
As	33000	5.9	5 1	4.6	5	4.5	1.8	1 4	1.8	1
A3 Ba	220	400	340	320	570	4.5	27	63	37	32
Bo	0.4	23	2	1.8	2	2 1	0.2	03	0.2	0.2
Bi	< 0.09	0.1	0.23	0.15	0 18	0.23	< 0.09	< 0.09	< 0.09	< 0.09
Ca	55000	12000	8100	18000	26000	13000	300000	280000	290000	290000
Cd	0.42	0.16	0.13	0.11	0.1	0.09	< 0.02	0.02	< 0.02	< 0.02
Ce	49	33	93	87	92	87	15	20	18	17
Co	7.3	17	17	14	16	16	2.8	2	1.9	3.5
Cr	82	78	74	80	71	73	10	19	11	12
Cu	27	50	45	130	32	36	1.8	4.2	0.7	9.2
Cs	1.7	9.3	11	9	9.4	9.9	2.5	1.8	1.5	1.4
Dy	4.8	2.5	4.9	4.7	5.3	4.5	1.1	1	0.87	0.61
Er	2.2	1.6	2.8	2.7	3	2.7	0.57	0.57	0.46	0.31
Eu	1.4	0.6	1.3	1.2	1.5	1.2	0.26	0.28	0.24	0.2
Fe	22000	44000	43000	43000	43000	42000	4000	6600	4400	5300
Ga	7.6	25	24	22	23	24	1.6	3.6	2.2	2.4
Gd	5.8	2.4	6	5.4	6.5	5.3	1.3	1.3	1.1	0.86
Ge	1.1	1.3	1.8	1.8	2	1.9	0.3	0.4	0.4	0.4
Hf	3.2	3.5	4.2	3.9	3.5	3.6	0.7	0.9	0.7	0.5
Ho	1	0.62	1.1	1.1	1.2	1.1	0.25	0.23	0.2	0.13
In	0.09	0.09	0.07	0.08	0.08	0.08	< 0.01	0.01	0.01	< 0.01
К	29000	35000	44000	39000	40000	42000	4200	11000	7000	7300
La	20	13	46	44	46	46	7.9	11	9.4	7.8
Li	20	40	43	42	40	42	1.9	4.3	2.8	2.4
Lu	0.32	0.28	0.48	0.47	0.49	0.49	0.08	0.088	0.072	0.048
Mg	18000	7900	19000	18000	17000	17000	4900	14000	8700	7100
Mn	880	590	450	480	540	420	150	300	230	160
Мо	5.4	0.2	0.3	0.5	1	1.2	0.5	1.4	0.8	2.8

 Table 5
 DGR-5 Elemental Geochemistry

Sample	DGR5-									
Number	583.40	605.55	645.16	677.25	692.35	699.49	704.99	715.40	725.33	764.72
Elemental Geochemistry										
(mag)										
Nb	10	15	18	16	15	16	5	6.3	5	4.1
Nd	30	16	40	37	41	37	7.3	8.2	7.6	6.6
Ni	16	35	35	32	39	40	8.6	49	6.5	7.5
Р	560	660	930	560	1300	1300	800	320	220	190
Pb	4.4	4.4	11	12	24	24	4.7	3.2	3.3	4.4
Pr	8	4.9	13	12	13	12	2.1	2.5	2.3	2
Rb	49	50	150	140	140	150	10	25	15	18
Sb	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Sc	7.2	2	16	15	16	16	2.4	3.3	2.7	2.7
Sm	6.5	3.2	7.5	6.5	7.9	6.4	1.4	1.5	1.4	1.1
Sr	80	350	140	160	340	120	480	310	290	570
Та	8.1	3.9	8.4	8.3	8.6	8.2	14	15	17	16
Tb	1	0.48	1	0.93	1.1	0.88	0.22	0.2	0.19	0.12
Th	6	0.81	19	17	17	18	1.2	3.3	1.9	1.8
Ti	2300	5100	5600	5100	5100	5300	360	800	470	380
TI	0.25	0.69	0.76	0.69	0.92	0.95	0.05	0.08	0.04	0.04
Tm	0.37	0.29	0.49	0.48	0.5	0.5	0.088	0.089	0.068	0.043
U	1.4	3.3	3.7	3.5	3.7	4.2	1.1	1.3	0.88	0.4
V	36	130	130	120	120	130	8.6	19	12	7.2
W	0.75	1.3	1.6	1.4	1.5	1.6	0.15	0.3	0.19	0.1
Yb	1.9	1.7	2.8	2.7	2.9	2.9	0.48	0.53	0.42	0.28
Y	23	4.3	22	21	25	22	7.7	6.5	5.3	3.4
Zn	47	82	69	65	67	62	6	12	13	6.5
Zr	92	97	120	110	95	100	12	24	16	13

DGR-5 Elemental Geochemistry

Revision 0

	2020	2020	2020	2020	2020	2020	2020	2020
Sample	DGR6-							
Number	004.08	004.31	097.07	/1/.9/	735.40	750.80	/01./0	/08.38
Other								
(70)	0.61	0.58	0.0	0.51	0.42	0.06	0.00	0.08
C total	0.61	0.56	0.9	0.51	0.43	0.06	0.09	0.08
C-organic	0.211	0.333	0.072	0.565	0.791	0.612	9.7	9.00
C-organic C.O.	3 15	3 15	1 69	1 92	3.61	37.8	35.1	35.8
S-total	0.314	0.75	0.669	1.02	1 12	0.066	0.095	0 113
Flemental	0.011	0110	0.000			0.000	0.000	01110
Geochemistry								
(ppm)								
Aq	0.47	0.22	0.29	0.24	0.2	< 0.01	0.02	< 0.01
AI	77000	7700	74000	77000	78000	7300	13000	9800
As	53	4.8	3.1	4 4	4.8	13	15	17
Ba	310	300	320	320	320	36	57	48
Be	2	19	1.8	1 9	2	0.2	0.4	0.2
Bi	0.19	0.22	0.2	0.21	0.19	< 0.09	< 0.09	< 0.09
Ca	21000	20000	13000	15000	26000	270000	270000	270000
Cd	0.14	0.13	0.1	0 11	0.09	< 0.02	< 0.02	< 0.02
Ce	77	38	77	82	79	16	19	17
Co	16	15	15	15	14	16	22	1.8
Cr	70	77	71	71	69	13	18	1.6
Cu	29	21	60	40	26	15	25	0.7
Cs	87	59	87	8.8	8.8	1.0	19	1.4
Dv	4.5	27	4 4	4.5	4.8	0.95	1	0.84
Fr	2.8	17	27	2.8		0.55	0.63	0.47
E. Fu	1.3	0.8	1.3	1.3	1.4	0.27	0.31	0.27
Fe	43000	44000	41000	44000	43000	5200	5800	4900
Ga	23	22	22	23	22	1.8	3.4	2.5
Gd	5.5	3	5.2	5.3	5.8	1.2	1.3	1.1
Ge	1.1	0.8	1	1.1	1.2	0.3	< 0.3	0.3
Hf	3.6	3.3	3.7	3.5	3.2	0.5	0.7	0.5
Ho	1	0.61	0.98	1	1.1	0.21	0.23	0.18
In	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
К	42000	32000	40000	41000	40000	8800	14000	12000
La	38	15	37	42	41	8.3	10	8.1
Li	42	32	41	41	37	4.4	8.2	6.8
Lu	0.42	0.23	0.42	0.44	0.46	0.072	0.09	0.064
Mg	16000	7300	17000	17000	18000	14000	11000	10000
Mn	700	670	470	490	570	410	260	250
Мо	0.2	0.3	0.4	0.8	1.3	0.2	0.3	0.2
Nb	16	13	15	15	14	3.8	5.1	4.1
Nd	33	19	32	34	35	6.8	7.7	6.7
Ni	33	34	34	36	37	6.2	8.6	5.9
Р	860	960	640	830	1400	290	340	220
Pb	6.7	14	18	23	24	2.2	2.5	2.7
Pr	9.7	5.1	9.5	10	10	1.9	2.2	1.9
Rb	160	42	150	160	160	17	31	23

Table 6 cont.

Revision 0

Sample Number	DGR6- 654.58	DGR6- 664.31	DGR6- 697.67	DGR6- 717.97	DGR6- 735.40	DGR6- 750.80	DGR6- 761.76	DGR6- 768.58
Elemental Geochemistry (ppm)								
Sb	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Sc	18	1	18	18	18	2.8	4	2.9
Sm	6.2	3.7	5.9	6.1	6.5	1.3	1.4	1.2
Sr	140	130	180	130	140	330	320	310
Та	3.4	1.3	2.8	2.8	2.6	3.1	2.8	2.5
Tb	0.75	0.39	0.72	0.75	0.8	0.061	0.085	0.046
Th	11	0.05	11	11	10	1.1	2.2	1.6
Ti	5200	4700	5200	5300	4900	450	800	610
TI	0.68	0.67	0.68	0.81	0.88	0.07	0.08	0.05
Tm	0.33	0.14	0.31	0.33	0.34	< 0.001	< 0.001	< 0.001
U	3.1	3.1	3.3	3.5	3.4	1.4	1.2	1
V	120	120	110	120	120	11	19	15
W	1.5	1.4	1.4	1.4	1.5	0.26	0.32	0.25
Yb	2.6	1.5	2.6	2.8	2.8	0.45	0.57	0.42
Y	21	4	20	21	24	6.4	6.7	4.9
Zn	71	73	63	62	58	4.5	7.1	5.2
Zr	110	110	110	100	98	14	24	19

DGR-6 Elemental Geochemistry

Sample	Major	Moderate	Minor	Trace	
Number	(>30 wt %)	(10% - 30 wt %)	(2% -10 wt %)	(<2% wt %)	
DC P5-592 40	quartz	potassium-feldspar,	calcite, chlorite, mica,	*anatasa	
DGR5-585.40	quartz	ankerite	halite	analase	
DCP5-605 55	mica quartz	potassium-feldspar,	ankarita calcita	*halita *anatasa	
DGN0-000.00	mica, quanz	chlorite	ankente, calche		
			potassium-feldspar,	*	
DGR5-645.16	quartz, mica	chlorite	plagioclase, ankerite,	apatite, anatase, *halite	
			pyrite		
			potassium-feldspar,	*pyrite, *ankerite,	
DGR5-677.25	quartz, mica	chlorite	calcite, plagioclase	*halite, *anatase,	
				*apatite	
			potassium-feldspar,		
DGR5-692.35	mica, quartz	chlorite	calcite, plagioclase,	*ankerite, *anatase, *halite *apatite	
			pyrite	nano, apano	
			pyrite, calcite,		
DGR5-699.49	mica, quartz	chlorite	plagioclase,	^ankerite, ^anatase, *halite	
			potassium-feldspar	nanco	
DCP5-704.00	calcita		chlorito Quartz	*potassium-feldspar,	
DGR5-704.99	Calcite		chionite, Quartz	*ankerite, *mica	
			potassium-feldspar,		
DGR5-715.40	calcite		quartz, chlorite,	*mica	
			ankerite		
DCD5 725 22	oploito		potassium-feldspar,	*ankarita *mica	
DGR0-/20.33	calcite		quartz, chlorite	"ankerite, "mica	
DODE 764 70	aalaita		potassium-feldspar,	*ankarita *miss	
DGR3-704.72	calcite		quartz, chlorite	ankente, "mica	

Table 7 Summary of XRD Qualitative Analysis, Mineral Identification for DGR-5 Core Samples

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

Sample	Major	Moderate	Minor	Trace	
Number	(>30 wt %)	(10% -30 wt %)	(2% -10 wt %)	(<2% wt %)	
			potassium feldspar,		
DRG6-654 58	mica quartz		chlorite, ankerite,	*palygorskite, *anatase,	
DNC0-034.30	mica, quanz		calcite, plagioclase,	*apatite, *halite	
			dolomite, pyrite		
			potassium feldspar,		
DGR6-664 31	mica quartz		chlorite, calcite,	*dolomite, *palygorskite,	
20110-004.01	miou, quanz		ankerite, pyrite,	*anatase, *apatite, *halite	
			plagioclase		
			potassium feldspar,		
DRG6-697-67	mica quartz		chlorite, calcite,	*ankerite, *halite, *dolomite,	
	mou, quanz		pyrite, plagioclase,	*anatase, *apatite	
			palygorskite		
			potassium feldspar,		
DRG6-717 97	mica, quartz		chlorite, calcite,	*ankerite, *anatase,	
			pyrite, palygorskite,	*dolomite, *apatite, *halite	
			plagioclase		
			chlorite, calcite,		
DRG6-735.40	mica, quartz		potassium feldspar,	*palygorskite, *anatase,	
			pyrite, ankerite,	*halite, *apatite	
			dolomite, plagioclase		
			dolomite, ankerite,	*nlagioglaca_*nyrita	
DRG6-750.80	calcite		quartz, mica,	*halite	
			potassium feldspar		
			ankerite, quartz,	*chlorite *plagioclase	
DRG6-761.76	calcite		dolomite, mica,	*pyrite, *halite	
			potassium feldspar		
			ankerite, mica,	*chlorite *plagioclase	
DRG6-768.58	calcite		quartz, dolomite,	*pyrite, *halite	
			potassium feldspar		

Table 8 Summary of XRD Qualitative Analysis, Mineral Identification for DGR-6 Core Samples

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

Sample Number	Minerals Present	Semi-Quantitative (wt %)	Formation	
-	Quartz	48		
	Orthoclase	18.3		
	Ankerite	Ankerite 12.3		
DGR5-583.40	Calcite	9.6	Georgian Bay	
	Sheet Silicates	9.3		
	Halite	2.2		
	Anatase	0.3		
	Sheet Silicates	47.3		
	Quartz	30.3		
	Orthoclase	14		
DGR5-605.55	Ankerite	3.2	Georgian Bay	
	Calcite	2.8		
	Halite	1.5		
	Anatase	1		
	Sheet Silicates	45.7		
	Quartz	35.2		
	Orthoclase	7.9		
	Anorthite	4.7		
DGR5-645.16	Ankerite	2.6	Georgian Bay	
	Pyrite	2		
	Hydroxylapatite	0.8		
	Anatase	0.7		
	Halite	0.5		
	Sheet Silicates	43.9		
	Quartz	36.7		
	Orthoclase	6.3	Blue Mountair	
	Calcite	4.1		
DGR5-677.25	Anorthite	3.7		
	Pyrite	1.9	Dido mountai	
	Ankerite	1.1		
	Halite	1.1		
	Anatase	0.6		
	Hydroxylapatite	0.6		
	Sheet Silicates	47.3		
	Quartz	30.1		
	Orthoclase	7		
	Calcite	5.5		
DGR5-692.35	Anorthite	4.1	Blue Mountair	
	Pyrite	2.6		
	Ankerite	1.2		
	Anatase	0.9		
	Halite	0.7		
	Hydroxylapatite	0.7		

Table 9 Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-5 Core Samples

Revision 0

Sample Number	Minerals Present	Semi-Quantitative (wt %)	Formation	
	Sheet Silicates	52.6		
	Quartz	32.9		
	Pyrite	3.7		
	Calcite	3.5		
DGR5-699.49	Albite	2.6	Blue Mountain	
	Orthoclase	2		
	Ankerite	1.3		
	Anatase	1		
	Halite	0.4		
	Calcite	92.8		
	Sheet Silicates	3.4		
DGR5-704.99	Quartz	2.2	Cobourg – Collingwood Memb	
	Orthoclase	1		
	Ankerite	0.6		
	Calcite	79.8		
	Sheet Silicates	6.5		
DGR5-715.40	Orthoclase	5.5	Cobourg – Lower Member	
	Quartz	4.6		
	Ankerite	3.6		
	Calcite	87.7		
	Orthoclase	4.1		
DGR5-725.33	Sheet Silicates	3.5	Cobourg – Lower Member	
	Quartz	2.9		
	Ankerite	1.8		
	Calcite	88.7		
	Orthoclase	4.2		
DGR5-764.72	Sheet Silicates	3.3	Sherman Fall	
	Quartz	2.9		
	Ankerite	1		

Table 9 cont Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-5 Core Samples

Sample Number	Minerals Present	Semi-Quantitative (wt %)	Formation			
	Sheet Silicates	47.1				
DRG6-654.58	Quartz	30.3				
	Orthoclase	4.9	Georgian Bay			
	Ankerite	3.5				
	Calcite	3.3				
	Albite	3.2				
	Dolomite	2.8				
	Pyrite	2.6				
	Anatase	1				
	Hydroxylapatite	0.7				
	Halite	0.5				
	Sheet Silicates	48.1				
	Quartz	31				
	Orthoclase	5				
	Calcite	3.4				
	Ankerite	3.3				
DGR6-664.31	Pyrite	2.7	Georgian Bay			
	Albite	2.6				
	Dolomite	1.7				
	Anatase	1				
	Hydroxylapatite	0.8				
	Halite	0.2				
	Sheet Silicates	47.2				
	Quartz	35.8				
	Orthoclase	4.5				
	Calcite	2.9				
	Albite	2.4				
DGR6-697.67	Pyrite	2.4	Blue Mountair			
	Ankerite	1.2				
	Halite	1				
	Dolomite	0.9				
	Anatase	0.9				
	Hydroxylapatite	0.7				
	Sheet Silicates	49				
	Quartz	33.9				
	Orthoclase	4.6				
DGR6-717.97	Calcite	4.2				
	Pyrite	2.5				
	Albite	Albite 2.4				
	Ankerite	1				
	Anatase	1				
	Dolomite	0.5				
	Hydroxylapatite	0.5				
	Halito	0.4				

Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-6 Core Samples

Table 10

Sample Number	Minerals Present	Semi-Quantitative (wt %)	Formation
	Sheet Silicates	46.4	
	Quartz	32.6	
	Calcite	5.3	
	Orthoclase	4.1	
	Pyrite	3.7	
DGR6-735.40	Ankerite	2.3	Blue Mountain
	Dolomite	2.3	
	Albite	2.2	
	Anatase	0.9	
	Halite	0.3	
	Hydroxylapatite	0.1	
	Calcite	74.7	
	Dolomite	7.7	
	Ankerite	6.9	
	Quartz	3.6	
DGR6-750.80	Sheet Silicates	3.4	Cobourg – Lower Member
	Orthoclase	2.3	
	Albite	0.5	
	Pyrite	0.5	
	Halite	0.3	
	Calcite	77.2	
	Ankerite	5.5	
	Sheet Silicates	5	
	Quartz	4.5	
DGR6-761.76	Dolomite	3.4	Cobourg – Lower Member
	Orthoclase	3.1	
	Albite	0.5	
	Pyrite	0.5	
	Halite	0.3	
	Calcite	79.6	
	Sheet Silicates	5.1	
	Ankerite	5	
DGR6-768.58	Quartz	3.3	
	Orthoclase	3.2	Coboura – Lower Member
	Dolomite	2.5	
	Clinochlore	1.7	
	Albite	0.5	
	Pyrite	0.5	
	Halite	0.3	

Table 10 cont. Summary of XRD Semi-Quantitative Analysis - Mineral Identification for DGR-6 Core Samples

4.3 <u>SEM/EMPA</u>

Tables 11 and 12 present the results of the SEM/EMPA analysis of DGR-5 and DGR-6 core samples, respectively. Appendices A (DGR-5) and B (DGR-6) contain the SGS reports for the two boreholes, including a description of SEM/EMPA analytical results, summary tables of semi-quantitative spot analyses, photographic plates of back-scattered scanning electron photographs, and selected EMPA spectra.

nples
r

Sample ID	Formation	SEM/EMPA Observations
DGR5-583.40	Georgian Bay	Irregular quartz and mica with overgrown zones of pyrite and some large rutile, dolomite and apatite grains. No NaCl (halite) observed.
DGR5-605.55	Georgian Bay	Irregular bands/veins of halite along fracture of void spaces in silicates, as irregular rims at the boundary of silicates and as wide disseminated patches
DGR5-645.16	Georgian Bay	Extensive interstitial cavity fillings zones and wide disseminated patches of halite
DGR5-677.25	Blue Mountain	Irregular veins/stringers and disseminated grains of halite
DGR5-692.35	Blue Mountain	Extensive broad interconnected cavity fillings zones of halite, irregular veins/stringers and rimmed halite
DGR5-699.49	Blue Mountain	Irregular disseminated grains, veins or rimmed cavity fillings of halite within silicates
DGR5-704.99	Cobourg - Collingwood Member	Irregular elongated grains/veins of halite along fracture planes, disseminated grains of halite within silicates
DGR5-715.40	Cobourg – Lower Member	Disseminated irregular grains/veins of halite along fractures in silicates and carbonate groundmass
DGR5-725.33	Cobourg – Lower Member	Disseminated irregular grains/veins of halite along fractures in silicates and carbonate groundmass
DGR5-764.72	Sherman Fall	Calcite matrix with quartz with some feldspar and apatite grains. No NaCI (halite)

Irregular veins of halite in the DGR5–605.55 (Georgian Bay) sample were noted along the fracture or void spaces within silicates (Plate 4, Appendix A) and as irregular rims at the boundary of silicates (Plate 5). Some NaCl crystallites appear as widely disseminated patches within silicates (Plates 6 and 7). These are suspected (Herwegh and Mazurek, 2008) of being vacuum-induced artefacts produced during desiccation by the SEM that causes the subsequent precipitation of salts such as halite on the sample surface. The differentiation between such original and artefact minerals is an area of uncertainty that requires further work. However, it should be noted that an entirely independent method – XRD – identified trace amounts of halite in all samples of the DGR-5 shales (see Table 9). Therefore, all occurrences of both Na and CI as veins and rims shown in Plates 4 and 5 of Appendix A and as patches in Plates 6 and 7 will be considered evidence of the presence of halite with the different textures and forms due to various stages of diagenesis and halite precipitation. Therefore, because the instrument detects Na and CI atoms and not halite minerals, we refer to the identification by SEM/EMPA as NaCI (halite) so as to distinguish this identification from that made by XRD.

Other examples of halite were identified in the five other shale samples. Extensive interstitial cavity fillings zones of NaCl (halite) and wide disseminated patches of halite were commonly noted in DGR5–645.16. Irregular veins/stringers and disseminated grains of NaCl (halite) were noted in the DGR5–677.25 sample (Plates 10-12).

Extensive broad interconnected cavity fillings zones of NaCl (halite), irregular veins/stringers and rimmed halite were commonly noted in the DGR5–692.35 sample (Plates 13-15). In the DGR5–699.49 sample, NaCl (halite) commonly occurred as irregular disseminated grains, veins or as rimmed cavity filling materials along the boundary of the silicates (Plates 16-18).

Table 12	Summary of SEM/EMPA Observations of DGR-6 Core Samp	les
	· · · · · · · · · · · · · · · · · · ·	

Sample ID	Formation	SEM/EMPA Observations
DGR6-654.58	Georgian Bay	Irregular interconnected halite bands along fracture/void spaces in silicates and carbonates
DGR6-664.31	Georgian Bay	Extensive interstitial cavity fillings and wide disseminated patches of halite
DGR6-697.67	Blue Mountain	Irregular rims of halite at boundary of silicates and veins/disseminated patches of halite in silicates
DGR6-717.97	Blue Mountain	Extensive interconnected bands and wide patches of halite in silicate groundmass
DGR6-735.40	Blue Mountain	Extensive interstitial cavity fillings of halite and wide disseminated patches of halite
DGR6-750.80	Cobourg – Lower Member	Extensive interstitial cavity fillings of halite and wide disseminated patches of halite
DGR6-761.76	Cobourg – Lower Member	Extensive interstitial cavity fillings of halite and wide disseminated patches of halite
DGR6-768.58	Cobourg – Lower Member	Extensive interstitial cavity fillings of halite and wide disseminated patches of halite

In the Middle Ordovician carbonates, XRD failed to detect halite. In the DGR5–704.99 (Cobourg) sample, NaCl (halite) was commonly noted as irregular elongated grains/veins along the fracture plane or as disseminated grains within silicates (Plates 19-21). Disseminated irregular grains/veins of NaCl (halite) were noted mostly along the fractures within silicates and carbonate groundmass in DGR5–715.40 and DGR5–725.33 samples (Plates 22-27). Most of the SEM-EDS analyses were carried out on silicates, carbonates and sulphides in the Sherman Fall sample DGR5–764.72 (Plates 28- 30), in which there was no evidence of NaCl (halite).

With respect to DGR-6 cores (see Appendix B), XRD results indicate that halite is present in all eight samples irrespective of whether they are shales (0.2 - 1.0 wt %) or from the Cobourg limestone (0.3 wt%). Irregular interconnected bands and veins of NaCl (halite) were noted along the fracture or void spaces within silicates and carbonates (Plates 1-4, Appendix B) in the DGR6-654.58 (Georgian Bay) sample. Extensive interstitial cavity-filling zones of NaCl (halite) and widely disseminated patches of NaCl (halite) were commonly noted in DGR6-664.31 (Georgian Bay, Plates 5 - 8). With respect to the three cores from the Blue Mountain Formation, DGR6-697.67 exhibited irregular rims of NaCl (halite) at the boundary of silicates and veins and disseminated patches of NaCl (halite) within silicates were noted (Plates 9-12). DGR6-717.97 showed extensive interconnected bands and wide patches of NaCl (halite) within silicates groundmass (see Tables & Plates 13 - 16). Extensive interstitial cavity fillings and widely disseminated patches of NaCl (halite) were commonly noted in DGR6-735.40, DGR6-750.80, DGR6-761.76 and DGR6-768.58 samples; the SEM-EDS results are presented in Appendix B (Tables and Plates 17 - 32).

5 Data Quality and Use

The data presented in this TR are consistent with previous studies of the mineralogy and geochemistry of DGR cores, e.g., TR-08-01 (Intera Engineering Ltd., 2009d), TR-08-02 (Intera Engineering Ltd., 2009e), TR-08-22 (Intera Engineering Ltd. 2010d), TR-08-23 (Intera Engineering Ltd., 2010c) and TR-08-29 (Intera Engineering Ltd., 2009c). In order to provide representative geochemical and mineralogical analyses, samples were collected from rock that was considered representative of the formation being sampled using previous experience from logging DGR-1, DGR-2, DGR-3 and DGR-4. Such point sampling cannot capture the full mineralogical or geochemical ranges of sampled formations, however, that was not the objective of this investigation. In some instances involving limestone and dolostone samples from the DGR boreholes, it has been observed that the geochemical analyses do not correspond to the logged lithology of the rock interval from which the sample was collected.

Core samples were collected that were considered representative of the general formation lithology in order that analytical results could be taken as representative of the general formation mineralogy. However, sampling by its nature is subjective, and as the formations are not entirely homogeneous, it is not possible to capture their full mineralogical and geochemical range. The mineralogy of most samples is consistent with the general lithology of the parent formation as identified during field logging, and is also consistent with the literature. Where the mineralogy of certain samples is not entirely consistent with their general formation lithology or their logged sample lithology, such samples are considered to represent subordinate facies within a formation. Discrepancies between analytical results and logged sample lithologies may arise as field logging and sample selection is an expedited process due to sample preservation requirements and thus some geological information may be overlooked. Differences between field and laboratory results also arise due to the fact that identification, hardness, reaction with acid) and distinguishing/identifying some minerals and proportions can be difficult.

6 Conclusions

Ten core samples collected from DGR-5 core and eight core samples from DGR-6 core were submitted to SGS of Lakefield, Ontario, for geochemical and XRD analysis and inspection by SEM/EMPA. Geochemical analysis consisted of the measurement of 12 oxides and 54 elements as well as other parameters including loss-on-ignition, total carbon, organic carbon, total sulphur, CO₂, and total chloride.

Few differences were observed between the formations sampled in these two inclined boreholes that sampled the Upper Ordovician shales and Middle Ordovician limestones beneath the Bruce nuclear site despite their dissimilar azimuths leading to cores being sampled in-situ approximately 2 km apart. The shales were predominantly composed of sheet silicates and quartz with minor amounts of K-feldspar, pyrite and plagioclase. Within the shales, calcite and ankerite were detected in DGR-5 and dolomite, calcite and ankerite in DGR-6. Halite, which was inferred from detection of Na and CI atoms, was present as veins, rims and patches that appeared to represent different periods of diagenesis. There was no SEM/EMPA evidence of other soluble minerals such as gypsum, anhydrite or celestite and only halite was detected by XRD.

The seven core samples of limestone included five from the Cobourg (Lower Member) Formation, one from the Collingwood Member (Cobourg Formation) and one from the Sherman Fall Formation. All were predominantly composed of calcite (> 70 wt %) with minor amounts of chlorite, quartz, K-feldspar, ankerite and, in the case of DGR-6 only, dolomite. NaCl (halite) was evident in several limestone cores by SEM/EMPA but only in DGR-6 was it detected by XRD at 0.3 wt %.

In general both the shales and the limestones that were sampled during drilling and coring of DGR-5 and DGR-6 appeared similar to other samples collected from the DGR boreholes. The identification of halite by the

presence of Na and CI atoms in the SEM/EMPA analyses of many of these samples is supported by the detection of halite by XRD.

7 References

Herwegh, M. and M. Mazurek, 2008. Feasibility SEM Study: Primary and Secondary Salts and Sulfates in the Paleozoic of the DGR-2 Borehole, Bruce, Southwestern Ontario, Progress Report PR 08-03, Institute of Geological Sciences, University of Bern, September 26, Switzerland.

Intera Engineering Ltd., 2010a. Test Plan for Phase 2 DGR-5 and DGR-6 Core Sampling and Distribution, TP-09-02, Revision 2, April 26, Ottawa.

Intera Engineering Ltd., 2010b. Technical Report: Petrographic Analysis of DGR-5 and DGR-6 Core, TR-09-05, Revision 0, September 20, Ottawa.

Intera Engineering Ltd., 2010c. Technical Report: Mineralogy and Geochemistry of DGR-4 Core, TR-08-23, Revision 0, February 18, Ottawa.

Intera Engineering Ltd., 2010d. Technical Report: Mineralogy and Geochemistry of DGR-3 Core, TR-08-22, Revision 0, February 18, Ottawa.

Intera Engineering Ltd., 2009a. Test Plan: Laboratory Testing of DGR-5 & DGR-6 Core for Geochemistry and Mineralogy, TP-09-10, Revision 0, August 5, Ottawa.

Intera Engineering Ltd., 2009b. Project Quality Plan, DGR Site Characterization, Revision 4, August 14, Ottawa.

Intera Engineering Ltd., 2009c. Technical Report: Organic Geochemistry and Clay Mineralogy of the DGR-3 and DGR-4 Core, TR-08-29, Revision 0, November 6, Ottawa.

Intera Engineering Ltd., 2009d. Technical Report: XRD Mineralogical Analysis of DGR-1 and DGR-2 Core, TR-08-01, Revision 0, April 16, Ottawa.

Intera Engineering Ltd., 2009e. Technical Report: Geochemical and SEM/EDS Analysis of DGR-1 and DGR-2 Core, TR-08-02, Revision 0, April 16, Ottawa.

Intera Engineering Ltd., 2008 Phase 2 Geoscientific Site Characterization Plan, OPG's Deep Geologic Repository for Low and Intermediate Level Waste, Report INTERA 06-219-50-Phase 2 GSCP-R0, OPG 00216-PLAN-03902-00002-R00, April, Ottawa.

Intera Engineering Ltd., 2006. Geoscientific Site Characterization Plan, OPG's Deep Geologic Repository for Low and Intermediate Level Waste, Report INTERA 05-220-1, OPG 00216-REP-03902-00002-R00, April, Ottawa

Reed, S.J.B., 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Second Edition, Cambridge University Press, Cambridge, UK.

APPENDIX A

SGS Report on SEM-EDS and XRD Mineralogy of DGR-5 Samples

SEM-EDS and XRD Mineralogy of

DGR5 SAMPLES

prepared for

Intera Engineering Limited

February 01, 2010

NOTE:

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Minerals Services. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and is not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc.

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

Member of the SGS Group (SGS SA)

Introduction

Ten samples from the DGR5, identified as DGR5–583.40, DGR5–605.55, DGR5–645.16, DGR5–677.25, DGR5–692.35, DGR5–699.49, DGR5–704.99, DGR5–715.40, DGR5–725.33 and DGR5–764.72 were submitted by Intera Engineering Limited for semi-quantitative XRD, whole rock analysis and SEM-EDS analysis. The objectives of the investigation were the estimation of different phases by XRD and SEM-EDS analysis of pore fabric and soluble minerals for the samples.

One polished section, prepared (Dry Preparation) from the cut slice of the above ten drill core samples was systematically scanned under scanning electron microscope with energy dispersive spectra for analysis of soluble minerals. X-ray powder diffraction analysis and whole rock analysis were carried out on the split grind samples

SGS LAKEFIELD RESEARCH LIMITED

Aparup Chattopadhyay, Ph.D., P. Geo. Senior Mineralogist

Roch Marion

Roch Marion, B.Sc., C.Chem. Manager, Process Mineralogy

Experimental Work by: Elaine Glover – Sample Logging Amie Brock – Polished Section Preparation Kim Gibbs – SEM-EDS

Report Preparation by: Aparup Chattopadhyay

Testwork Summary

1. Sample Preparation

One polished section, prepared (Dry Preparation) from the cut slice of the above ten drill core samples. Representative sub-samples were split after grinding a cut slice for X-ray diffraction and chemical analysis from all the drill core samples (DGR5).

2. X-ray Powder Diffraction Analysis

XRD analysis results, listed in Appendix 1, showed that DGR5-583.40 sample was mainly composed of quartz with moderate amounts of potassium-feldspar and ankerite, minor amounts calcite, chlorite and mica and traces of anatase; DGR5–605.55 sample was mainly composed of mica and quartz, with moderate amounts of potassium-feldspar and chlorite, minor amounts ankerite and calcite, and traces of halite and anatase; DGR5-645.16 sample was mainly composed of quartz and mica, with a moderate amount of chlorite, minor amounts potassiumfeldspar, plagioclase, ankerite and pyrite, and traces of apatite, halite and anatase; DGR5–677.25 sample was mainly composed of quartz and mica, with a moderate amount of chlorite, minor amounts potassium-feldspar, calcite and plagioclase, and traces of pyrite, ankerite, halite, anatase and apatite; DGR5-692.35 sample was mainly composed of mica and quartz, with a moderate amount of chlorite, minor amounts potassium-feldspar, calcite, plagioclase and pyrite, and traces of ankerite, halite, anatase and apatite; DGR5-699.49 sample was mainly composed of mica and quartz, with a moderate amount of chlorite, minor amounts pyrite, potassium-feldspar, calcite and plagioclase, and traces of ankerite, anatase and halite; DGR5–704.99 sample was dominantly composed of calcite, with minor amounts of chlorite and quartz, and traces of potassiumfeldspar, ankerite and mica; DGR5-715.40 sample was dominantly composed of calcite, with

minor amounts of potassium-feldspar, quartz, chlorite and ankerite, and traces of mica; DGR5– 725.33 sample was dominantly composed of calcite, with minor amounts of potassium-feldspar, quartz and chlorite, and traces of ankerite and mica; DGR5–764.72 sample was dominantly composed of calcite, with minor amounts of potassium-feldspar, quartz and chlorite, and traces of ankerite and mica.

3. Scanning Electron Microscopy

The analysis of pore fabric and soluble minerals by SEM-EDS for the ten DGR5 core samples were carried out by Tescan Vega II SEM with Oxford Inca EDS/WDS system. The carbon coated polished sections (dry preparation) from DGR3 were scanned under the SEM-EDS system for semi-quantitative spot analysis for the study of the pore fabric and soluble minerals and the results were presented in Tables 1-30 and the back scattered scanning electron photographs in plates 1-30. Selected EDS spectra were tabulated in Appendix-2.

Irregular bands/veins of Na-Chloride (halite) were noted along the fracture or void spaces within silicates (Plate 4), as irregular rims at the boundary of silicates (Plate 5) and as wide disseminated patches within silicates (Plate 6) in DGR5–605.55 sample. In DGR5–645.16 sample, most of the SEM-EDS analyses were carried out in Na-Chloride (halite) and the results of the analysis were presented in Tables/Plates 7-9. Extensive interstitial cavity fillings zones of Na-Chloride (halite) and wide disseminated patches of halite were commonly noted in DGR5–645.16. Irregular veins/stringers and disseminated grains of Na-Chloride (halite) were noted in DGR5–677.25 sample (Plates 10-12). Extensive broad interconnected cavity fillings zones of Na-Chloride (halite), irregular veins/stringers and rimmed halite were commonly noted in

DGR5–692.35 sample (Plates 13-15). In DGR5–699.49 sample, halite commonly occurred as irregular disseminated grains, veins or as rimmed cavity filling materials along the boundary of the silicates (Plates 16-18). In DGR5–704.99 sample, halite was commonly noted as irregular elongated grains/veins along the fracture plane or as disseminated grains within silicates (Plates 19-21). Disseminated irregular grains/veins of halite were noted mostly along the fractures within silicates and carbonate groundmass in DGR5–715.40 and DGR5–725.33 samples (Plates 22-27). Most of the SEM-EDS analyses were carried out on silicates, carbonates and sulfides in DGR5–764.72 sample (Plates 28- 30).

Sample: DGR5 – 583.40						Elements (in Wt.%)				
Spots	0	Mg	Al	Si	K	Са	Ti	Mn	Fe	
1-1	45.67		9.90	31.45	12.98					
1-2	51.78			48.22						
1-3	45.88	1.37	2.09	3.58			43.85		3.23	
1-4	45.20	4.98	12.90	13.33	1.03			1.14	21.42	
1-5	63.64	0.72				35.64				

Table 1: Results of Semi-Quantitative Spot Analysis in Quartz, Mica, Chlorite Rutile and Calcite

Plate 1: Back scattered scanning electron photographs indicating position of spots analysis in DGR5 – 583.40

Sample: DGR5 – 583.40						s (in Wt.%	6)				
Spots	0	F	Mg	AI	Si	Р	S	K	Са	Ti	Fe
2-1	43.23									56.77	
2-2	45.83			9.34	31.56			13.26			
2-3	56.36		13.35						27.73		2.56
2-4	46.55			9.53	31.81			12.11			
2-5	34.90	5.99				19.24			39.86		
2-6	52.47				47.53						
2-7					0.76		50.10				49.14

Table 2: Results of Semi-Quantitative Spot Analysis in Quartz, Mica, Apatite, Calcite,
Dolomite, Rutile and Pyrite

Plate 2: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 583.40

Sample:	DGR5 –	583.40		Elements (in Wt.%)						
Spots	0	Mg	Al	Si	K	Ti	Fe	Zr		
6-1	45.70		9.58	32.10	12.62					
6-2	41.93					58.07				
6-3	32.94			15.74				51.32		
6-4	51.83			48.17						
6-5	43.45	6.52	11.56	15.20			23.27			

Table 3: Results of Semi-Quantitative Spot Analysis in Quartz, Chlorite, Mica, Rutile and Zircon

Plate 3: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 583.40

Sample:	DGR5-6	05.55		Elements (in Wt.%)				
Spots	0	Na	Mg	Al	Si	CI	K	Fe
2-1	5.48	29.62	0.90	4.57	11.18	43.99	2.41	1.84
2-2	7.56	33.37		3.03	5.71	49.11	1.22	
2-3	7.36	33.23		3.01	8.77	44.86	1.53	1.24
2-4	2.84	37.47		0.84	3.02	55.83		
2-5	45.29		5.74	10.09	18.24		2.17	18.46

Table 4: Results of Semi-Quantitative Spot Analysis in Na-Chloride and Chlorite

Plate 4: Back scattered scanning electron photograph indicating position of spots analysis in DGR5-605.55

Sample:	DGR5-6	05.55		Elements (in Wt.%)						
Spots	0	Na	Mg	Al	Si	Cl	K	Fe		
3-1	45.66		0.86	17.51	25.30		8.85	1.82		
3-2	5.09	36.80		1.55	3.05	52.95	0.56			
3-3	13.48	29.28	1.01	3.65	4.92	42.07		5.60		
3-4	12.95	30.71	0.64	3.84	8.33	40.83	1.66	1.04		
3-5	4.26	30.16		2.70	7.35	52.61	1.37	1.56		
3-6	10.51	32.27	0.54	3.54	7.20	43.26	1.67	1.00		
3-7	15.90	26.13	1.02	5.85	11.73	34.52	2.70	2.15		
3-8	45.11	1.44	7.31	9.55	13.21	5.77		17.62		

Table 5: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Feldspar and chlorite

Plate 5: Back scattered scanning electron photograph indicating position of spots analysis in DGR5-605.55

Sample:	DGR5-6	05.55			Elements (in Wt.%)					
Spots	0	Na	Mg	AI	Si	CI	K	Ti	Fe	
6-1		39.31		0.78	1.58	58.33				
6-2		34.54		1.50	3.52	59.47	0.98			
6-3		36.43		0.82	2.09	60.12	0.54			
6-4		34.64		1.06	8.19	56.10				
6-5		36.35		0.49	1.74	61.42				
6-6		38.83		0.72	2.00	58.45				
6-7	47.58				52.42					
6-8	48.00		8.93	9.41	16.52	0.56	2.52	1.25	12.81	

Table 6: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz and Chlorite

Plate 6: Back scattered scanning electron photograph indicating position of spots analysis in DGR5-605.55

Sample: D	GR5 – 648	5.16		Eler	nents (in \				
Spots	0	Na	Mg	AI	Si	S	Cl	K	Fe
1-1						54.60			45.40
1-2	47.87		0.49	17.83	23.78			8.67	1.36
1-3	2.74	36.99		1.30	1.79		57.18		
1-4		40.31			1.11		58.58		
1-5	3.80	36.70		1.69	3.12		54.03	0.66	
1-6	4.06	30.09		3.26	7.94		50.87	2.03	1.74
1-7		36.92		0.97	3.23		58.88		

Table 7: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Feldspar and Pyrite

Plate 7: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 645.16
Sample:	DGR5 –	645.16		E	Elements ((in Wt.%)						
Spots	0	Na	Mg	Al	Si	Р	S	CI	K	Са	Ti	Fe
2-1	44.77				54.71			0.53				
2-2	39.97		9.48	12.51	13.76							24.27
2-3							56.48					43.52
2-4	8.21	32.16		3.57	7.55			45.63	1.66			1.22
2-5	39.06			0.79	2.20						57.95	
2-6		37.00		1.16	2.66			58.61	0.58			
2-7	2.67	38.78		0.70	1.41			56.44				
2-8	43.35		2.50	17.79	26.10				10.25			
2-9	6.71	30.97		1.81	5.00	1.56		48.88	1.68	3.39		

Table 8: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz, Mica, Chlorite, Rutile and Pyrite

100µm

Site of Interest 2

Plate 8: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 - 645.16

Sample: Do	GR5 – 648	5.16		Eler	nents (in \	Wt.%)				
Spots	0	Na	Mg	AI	Si	P	Cl	K	Ti	Fe
5-1	44.33		4.28	10.77	18.52		0.55	3.86	4.07	13.62
5-2	8.57	30.47		5.14	10.07		43.29	2.46		
5-3	10.93	30.81	1.11	3.95	6.44		43.35	1.60		1.81
5-4	4.03	31.07		2.59	6.51	1.10	53.91	0.80		
5-5	5.95	27.94	1.11	4.81	10.56		43.97	2.19		3.48

Table 9: Results of Semi-Quantitative Spot Analysis in Na-Chloride, and Mica

Plate 9: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 645.16

Sample:	DGR5 –	677.25				Elem	ents (in V	Vt.%)				
Spots	0	F	Na	Mg	Al	Si	P	S	CI	K	Са	Fe
4-1								54.28				45.72
4-2	55.14			10.92							28.09	5.86
4-3	50.63					49.37						
4-4	55.74			0.73							43.54	
4-5	37.13	7.75				0.67	17.83				36.62	
4-6	11.16		35.58		1.39	2.99			48.41	0.46		
4-7	6.18					1.46		50.28				42.09
4-8	23.81		22.46	1.39	3.32	6.00			39.49	1.32		2.20

Table 10: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite,Apatite, Quartz and Pyrite

Plate 10: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 677.25

Sample:	DGR5 –	677.25			Elem	ents (in W	/t.%)				
Spots	0	F	Na	Mg	AI	Si	Р	CI	K	Са	Fe
5-1	35.75	5.94					19.66			38.65	
5-2	46.73			12.68	9.95	15.61		1.43			13.61
5-3	45.83			5.73	12.59	15.67			2.13		18.05
5-4	18.70		26.16	1.11	2.52	4.88		43.77	1.16		1.69
5-5	11.92		29.50	1.00	4.97	9.13		40.19	2.04		1.25
5-6	15.10		30.05	0.80	2.70	5.71		42.86	0.88		1.90
5-7	12.78		29.32	1.28	3.62	10.06		38.97	0.97		3.00

Table 11: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Apatite, Mica and chlorite

Plate 11: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 677.25

				Cuit	Tite, Quui	L unu i	<i>y</i> 1100				
Sample:	DGR5 –	677.25		E	Elements	(in Wt.%)					
Spots	0	Na	Mg	Al	Si	S	Cl	K	Са	Fe	
7-1	13.98	27.24	0.98	4.45	10.61		38.67	1.23		2.86	
7-2	16.51	30.31	0.69	1.70	7.74		43.06				
7-3	51.37				48.63						
7-4	54.15		1.39	1.39 0.81 2.13 0.65 4							
7-5						55.52				44.48	

Table 12: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Calcite, Quartz and Pyrite

Plate 12: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 677.25

Sample:	DGR5 –	692.35		E	Elements	(in Wt.%)				
Spots	0	Na	Mg	Al	Si	S	CI	K	Са	Fe
1-1		1.00			0.73	55.15				43.12
1-2	52.98				47.02					
1-3	24.77	25.13	1.76	3.40	4.47		35.55	0.56		4.35
1-4		38.94		1.50	2.61		56.95			
1-5	5.66	33.77		1.50	4.83		53.45	0.79		
1-6	4.65	33.82		3.23	6.99		48.18	1.67	1.45	
1-7	3.91	34.63		2.87	6.57		50.68	1.35		

Table 13: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Ouartz and Pyrite

Plate 13: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 692.35

					,	J				
Sample:	DGR5 –	692.35		E	lements (in Wt.%)				
Spots	0	Na	Mg	Al	Si	S	Cl	K	Са	Fe
2-1	53.44		1.67						44.89	
2-2	39.43	1.81	1.30	15.43	23.94		4.90	9.42		3.77
2-3	9.71	32.63	0.83	2.81	6.92		44.45	0.83		1.81
2-4	8.27			0.61	2.11	48.02				40.99
2-5		39.47		0.49	0.78		59.26			
2-6	3.64	37.81		1.12	3.23		54.19			
2-7		35.24		1.22	2.10		61.44			

Table 14: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Mica and Pyrite

Plate 14: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 692.35

Sample	e: DGR5	- 692.35	5		Eleme	nts (in Wt	%)			
Spots	0	Na	Mg	Al	Si	S	Cl	K	Са	Fe
5-1				0.64	1.51	54.45				43.40
5-2	46.56		1.43	14.55	24.94			8.77		3.74
5-3	2.95	35.70		1.47	3.58		56.30			
5-4	4.48	33.31		1.37	4.16		54.72	0.77	1.19	
5-5	5.32	37.63		1.40	3.14		51.91	0.61		
5-6	2.30	32.92		1.29	3.05		59.02			1.41
5-7	2.72	35.34		0.57	4.68		56.68			
5-8	5.48	37.28		1.60	3.80		51.84			

Table 15: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Mica and Pyrite

Plate 15: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 692.35

Sample	e: DGR5	- 699.49			Elements (in Wt.%)						
Spots	0	Na	Mg	AI	Si	S	CI	K	Fe		
1-1		0.88				54.52			44.60		
1-2	44.45		1.97	14.27	26.61			9.55	3.15		
1-3	46.20		8.19	11.09	15.96			0.75	17.82		
1-4	7.82	30.52	1.21	5.71	8.57		40.31	1.41	4.44		
1-5	8.10	32.33		2.50	7.90		48.03	1.14			
1-6	4.73	35.74		1.60	3.70		53.60	0.64			
1-7	7.81	30.60	0.65	3.66	6.33		49.55	1.40			
1-8		37.62		0.87	2.74		58.78				

Table 16: Results of Semi-Quantitative Spot Analysis in Na-Chloride,Feldspar, Mica and Pyrite

Plate 16: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 699.49

Sample	e: DGR5	- 699.49			Elements (in Wt.%)						
Spots	0	Na	Mg	AI	Si	S	CI	K	Fe		
5-1	8.52	34.01		1.91	6.16		47.47	0.75	1.18		
5-2		0.91			0.61	54.18			44.30		
5-3	7.47	35.93		1.34	5.75		49.51				
5-4	13.40	32.17		2.14	4.39		46.92	0.98			
5-5	5.74	28.25		0.97	4.58		59.69	0.77			
5-6	9.96	32.98	1.04	2.73	4.61		46.79	0.80	1.09		
5-7	13.44	32.04	0.54	2.48	6.31		44.41	0.77			
5-8	45.95		7.84	10.71	14.74				20.77		

Table 17: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Pyrite and Chlorite

			2						
Sample:	DGR5 –	699.49			Eleme	ents (in W	t.%)		
Spots	0	Na	Mg	Al	Si	S	Cl	K	Fe
6-1	45.32		1.64	15.19	26.14			9.59	2.11
6-2					0.89	54.37			44.74
6-3	44.92				55.08				
6-4	44.83		1.27	16.06	26.31			9.26	2.27
6-5	3.18	36.19		2.21	4.43		52.90	1.09	
6-6	3.19	33.49		1.74	5.09		54.21	1.04	1.25
6-7		38.12			0.55		61.33		
6-8	5.04	38.64			3.03		53.29		
6-9	2.43	33.61		3.12	7.24		51.87	1.74	

Table 18: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Ouartz, Mica, Chlorite and Pyrite

Plate 18: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 699.49

Sample	: DGR5 -	704.99		ł	Elements	(in Wt.%)	
Spots	0	Na	Mg	Al	Si	CI	К	Ca
3-1	25.20	23.61	0.66	2.46	6.18	27.43	1.63	12.83
3-2	10.94	29.98		2.94	8.61	40.07	2.89	4.57
3-3	13.21	30.59	0.65	2.39	6.00	40.98	1.24	4.93
3-4	12.97	29.45		1.94	5.60	40.31	1.77	7.96
3-5	53.40							46.60
3-6	55.09				40.42			4.49

Table 19: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Quartz

Plate 19: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 -704.99

Sample	: DGR5	-704.99	Elements (in Wt.%)								
Spots	0	F	Na	Na Mg Al Si P S						K	Са
5-1	52.36					47.64					
5-2	9.04		32.66		2.40	5.36			45.45	1.04	4.05
5-3	2.82		17.39		1.40	3.60			71.91	1.61	1.27
5-4	11.02		31.35	0.64	2.83	6.34			42.17	1.54	4.13
5-5	41.14	9.26	0.86		0.67	1.09	14.07	0.44	0.69		31.78
5-6	49.99					1.22					48.78

Table 20: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Quartz, Calcite and Apatite

Plate 20: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 -704.99

Sample	e: DGR5	-704.99	E	lements (in Wt.%)	
Spots	s O Na		Mg	CI	Са	Fe
8-1	56.48		16.48		27.04	
8-2	56.01		11.87		27.70	4.42
8-3	54.84		0.64		44.52	
8-4		39.92		60.08		

Table 21: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 21: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 -704.99

Sample	: DGR5 -	- 715.40		Ele					
Spots	0	Na	Mg Al Si Cl				Са	Fe	Br
1-1		40.87				59.13			
1-2	56.49		13.35				28.40	1.76	
1-3	56.73		14.90		0.77		26.35		1.25
1-4	52.48		0.86	1.12	2.08		43.45		
1-5		34.68			0.53	64.20	0.59		
1-6	2.73	39.03			0.66	57.57			

Table 22: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 22: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 715.40

Sample	e: DGR5	- 715.40		Elements (in Wt.%)							
Spots	0	Na	Mg	AI	Si	CI	K	Са	Fe		
5-1	13.67	29.87		1.51	2.86	43.54	0.80	7.74			
5-2	5.72	33.78		0.47	0.84	57.70		1.50			
5-3	56.38		13.89					26.45	3.28		
5-4	53.78		0.74					45.47			

Table 23: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 23: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 715.40

Sample	e: DGR5	- 715.40			Elemer	nts (in Wt.	.%)		
Spots	0	Na	Mg	Al	Si	CI	K	Са	Fe
7-1	6.07	33.26		0.56	1.86	49.59		8.67	
7-2	10.24	21.10		2.05	6.95	52.70	1.50	5.47	
7-3	6.25	36.65		0.78	1.37	53.77		1.18	
7-4	2.73	36.08		0.60	1.48	57.24		1.87	
7-5	5.13	33.10		0.76	1.89	54.38		4.73	
7-6	55.57		0.60					43.83	
7-7	54.96		13.25		3.29			26.73	1.76

Table 24: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

position of spots analysis in **DGR5 – 715.40**

Sample:	Sample: DGR5 – 725.33						Elements (in Wt.%)					
Spots	0	Na	Mg	Al	Si	S	CI	K	Са	Fe		
1-1	3.20	40.67					55.32	0.33	0.48			
1-2	4.60	32.64	0.44	1.20	2.40		43.58	0.86	14.29			
1-3						55.04			0.95	44.02		
1-4	8.56	32.34	0.35	1.69	7.92		44.10	1.15	3.90			
1-5	1.30	34.23					62.86	0.78	0.83			

Plate 25: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 725.33

Sample:	DGR5 – 72	25.33	Ele	ments (i	n Wt.%)			
Spots	0	Na	Mg	AI	Si	CI	K	Са
3-1	14.03	20.65		1.91	5.42	52.46	1.42	4.10
3-2	57.03		16.33					26.65
3-3	52.01		0.98					47.01

Table 26: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 26: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 725.33

Sample:	DGR5 – 72	25.33	Ele	Wt.%)		
Spots	0	Na	AI	Si	CI	Са
6-1	26.73	28.61	0.49	2.24	32.62	9.30
6-2	54.39					45.61
6-3	53.75			44.60		1.65

Table 27: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz and Calcite

Site of Interest 6

Plate 27: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 725.33

Sample:	DGR5 – 7	764.72								
Spots	0	F	Na	Mg	AI	Si	Р	S	CI	Са
2-1	39.07	7.98	0.62		0.50	0.68	15.03	0.61	0.66	34.85
2-2	52.20					46.83				0.98
2-3	53.16			0.54	0.52	1.01				44.77

Table 28: Results of Semi-Quantitative Spot Analysis in Quartz,Apatite and Calcite

Plate 28: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 764.72

Sample:	DGR5 – 7	764.72		Elements (in Wt.%)							
Spots	0	Mg	AI	Si	S	K	Са	Fe			
4-1	45.85		9.10	31.82		13.22					
4-2	52.70			47.30							
4-3				0.51	50.98		2.89	45.62			
4-4	53.26			46.74							
4-5	53.82	0.62					45.55				

Table 29: Results of Semi-Quantitative Spot Analysis in Feldspar,
Quartz, Calcite and Pyrite

Plate 29: Back scattered scanning electron photograph indicating position of spots analysis in DGR5 – 764.72

Sample:	DGR5 –	764.72			Ele	ments (ir	n Wt.%)	
Spots	0	Mg	AI	Si	S	K	Са	Fe
5-1	53.73	0.87					45.40	
5-2	52.07			47.24			0.69	
5-3	11.48		0.98	2.48	45.61	0.47	1.28	37.71
5-4	24.38				24.56		28.35	22.71

Table 30: Results of Semi-Quantitative Spot Analysis in Calcite, Quartz and Pyrite

4. Comments

- 1. General Mineralogy by semi-quantitative XRD analysis and analysis of pore fabric and soluble minerals by SEM-EDS was carried out for all the ten DGR5 samples.
- 2. In general, the samples were mainly composed of quartz, mica and calcite with minor to moderate amounts of potassium feldspar, chlorite, plagioclase and ankerite, and traces of halite, pyrite and anatase.
- 3. SEM-EDS study indicated presence of Na-Chloride (halite) in most of these samples.
- 4. Na-Chloride (halite) mostly occurred as voids/cavity fillings interstitial materials mainly within silicates groundmass in the form of irregular bands, veins/stringers and disseminated grains.
- Irregular discontinuous rimmed halite along the boundary of silicates was commonly noted.
- 6. Broadly interconnected bands/veins of halite were also noted within silicates and carbonates groundmass.
- The irregular or sub-rounded grains and stringers of pyrite were commonly noted within silicates and carbonates matrix in most of the samples.

Appendix – 1: XRD Results

Summary of Semi-Quantitative X-ray Diffraction Results

Sample	Major	Moderate	Minor	Trace
	(>30% Wt)	(10% -30% Wt)	(2% -10% Wt)	(<2% Wt)
DGR5-583.40	quartz	potassium-feldspar, ankerite	calcite, chlorite, mica, halite	*anatase
DGR5-605.55	mica, quartz	potassium-feldspar, chlorite	ankerite, calcite	*halite, *anatase
DGR5-645.16	quartz, mica	chlorite	potassium-feldspar, plagioclase, ankerite, pyrite	*apatite, *anatase, *halite
DGR5-677.25	quartz, mica	chlorite	potassium-feldspar, calcite, plagioclase	*pyrite, *ankerite, *halite, *anatase, *apatite
DGR5-692.35	mica, quartz	chlorite	potassium-feldspar, calcite, plagioclase, pyrite	*ankerite, *anatase, *halite, *apatite
DGR5-699.49	mica, quartz	chlorite	pyrite, calcite, plagioclase, potassium-feldspar	*ankerite, *anatase, *halite
DGR5-704.99	calcite	-	chlorite, Quartz	*potassium-feldspar, *ankerite, *mica
DGR5-715.40	calcite	-	potassium-feldspar, quartz, chlorite, ankerite	*mica
DGR5-725.33	calcite	-	potassium-feldspar, quartz, chlorite	*ankerite, *mica
DGR5-764.72	calcite	-	potassium-feldspar, quartz, chlorite	*ankerite, *mica

Crystalline Mineral Assemblage (relative proportions based on peak height)

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

Mineral	Composition
Anatase	TiO ₂
Ankerite	CaFe(CO ₃) ₂
Apatite	Ca ₅ (PO ₄) ₃ (F,CI,OH)
Calcite	CaCO ₃
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Halite	NaCl
Mica	K(Mg,Fe)Al ₂ Si ₃ AlO ₁₀ (OH) ₂
Plagioclase	(NaSi,CaAl)AlSi ₂ O ₈
Potassium Feldsp	KAISi ₃ O ₈
Pyrite	FeS ₂
Quartz	SiO ₂

Jennifer LaBelle-Brown, A.Sc.T Technologist, XRD Aparup Chattopadhyay, Ph.D., P.Geo Senior Mineralogist

Method Summary

Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 40 kV, 35 mA Regular Scanning: Step: 0.02°, Step time:0.2s, 20 range: 3-70°
Detection Limit :	0.5-2%. Strongly dependent on crystallinity.

Mineral Identification and Interpretation:

Mineral identification and interpretation involve matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the JCPDS-ICDD database and released on software as Powder Diffraction File (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds. Mineral proportions are based on relative peak heights and may be strongly influenced by crystallinity, structural group or preferred orientations. Interpretations and relative proportions should be accompanied by supporting petrographic and geochemical data (WRA, ICP-OES).

Semi-Quantitative Analysis:

The Semi-Quantitative analysis (RIR method) is performed based on each mineral's relative peak heights and of their respective I/Icor values, which are available from the PDF database. Mineral abundances for the bulk sample (in weight %) are generated by Bruker-EVA Software. These data are reconciled with a bulk chemistry (e.g. whole rock analysis including SiO₂, Al₂O₃, Na₂O, K₂O, CaO, MgO, Fe₂O₃, Cr₂O₃, MnO, TiO₂, P₂O₅, V₂O₅ or other chemical data).

Mineral	DGR5-583.40	DGR5-605.55	DGR5-645.16	DGR5-677.25	DGR5-692.35
	(wt %)				
Quartz	48.0	30.3	35.2	36.7	30.1
Clinochlore	6.4	12.1	10.7	10.9	13.2
Orthoclase	18.3	14.0	7.9	6.3	7.0
Muscovite	2.9	24.9	28.1	27.1	27.7
Glauconite	-	10.3	6.9	5.9	6.4
Anorthite	-	-	4.7	3.7	4.1
Calcite	9.6	2.8	-	4.1	5.5
Ankerite	12.3	3.2	2.6	1.1	1.2
Anatase	0.3	1.0	0.7	0.6	0.9
Halite	2.2	1.5	0.5	1.1	0.7
Pyrite	-	-	2.0	1.9	2.6
Hydroxlyapatite	-	-	0.8	0.6	0.7
TOTAL	100.0	100.1	100.1	100.0	100.1

Semi-Quantitative X-ray Diffraction Results

Mineral	DGR5-699.49	DGR5-704.99	DGR5-715.40	DGR5-725.33	DGR5-764.72
	(wt %)				
Quartz	32.9	2.2	4.6	2.9	2.9
Clinochlore	12.3	3.0	4.6	2.8	2.9
Orthoclase	2.0	1.0	5.5	4.1	4.2
Muscovite	40.3	0.4	1.9	0.7	0.4
Albite	2.6	-	-	-	-
Calcite	3.5	92.8	79.8	87.7	88.7
Ankerite	1.3	0.6	3.6	1.8	1.0
Anatase	1.0	-	-	-	-
Halite	0.4	-	-	-	-
Pyrite	3.7	-	-	-	-
TOTAL	100.0	100.0	100.0	100.0	100.1

Semi-Quantitative X-ray Diffraction Results

DGR5-583.40

DGR5-605.55

2000

0

2000

0

01-082-0576 (C) - Muscovite 2M1 - KAI2(AISi3O10)(OH)2

⊠00-041-0586 (*) - Ankerite - Ca(Fe+2,Mg)(CO3)2

00-002-0466 (D) - Glauconite - (K,Na)(Fe+3,AI,Mg)2(Si,AI)4O10(OH)2 01-078-2330 (C) - Anorthite - Na.25Ca.71(Al2Si2O8)

Lin (Counts) 1000 6

Lin (Counts) 1000

SGS Minerals Services

DGR5-645.16

DGR5-677.25

DGR5-692.35

DGR5-699.49
Lin (Counts) Lin (Counts) 2-Theta - Scale File: nov5012-7.raw ●01-079-1910 (C) - Quartz - SiO2

DGR5-704.99

•01-072-1652 (C) - Calcite - CaCO3

01-075-1190 (C) - Orthoclase - K(AlSi3)O8

▲01-082-0038 (C) - Clinochlore IIb-4 (Cr-, Mg-rich) - (Mg0.99Al0.01)5(Al0.67Fe0.33)(Si3.02Al0.98)O10(OH)8

▼01-086-1384 (C) - Muscovite 2M1 - K0.894Al1.93(Al0.943Si2.829O10)((OH)1.744F0.256)

100-041-0586 (*) - Ankerite - Ca(Fe+2,Mg)(CO3)2

DGR5-715.40

DGR5-725.33

Lin (Counts) Lin (Counts) 2-Theta - Scale File: NOV5012-10.raw •01-079-1910 (C) - Quartz - SiO2 • 01-072-1652 (C) - Calcite - CaCO3 01-075-1190 (C) - Orthoclase - K(AlSi3)O8

▲01-082-0038 (C) - Clinochlore IIb-4 (Cr-, Mg-rich) - (Mg0.99Al0.01)5(Al0.67Fe0.33)(Si3.02Al0.98)O10(OH)8

▼01-086-1384 (C) - Muscovite 2M1 - K0.894Al1.93(Al0.943Si2.829O10)((OH)1.744F0.256)

100-041-0586 (*) - Ankerite - Ca(Fe+2,Mg)(CO3)2

Appendix – 2: EDS Spectra

Appendix – 3: Whole Rock Analysis Data

SGS Lakefield Research Limited P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Intera Engineering Ltd.

Attn : Ken Raven

1 Raymond St., Suite 200 Ottawa, Ontario K1R 1A2, Canada

Phone: (613) 232-2525 ext. 326 Fax:(613) 232-7149

CERTIFICATE OF ANALYSIS

Final Report

Sample ID	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P205	MnO	Cr2O3	V205	LOI	Sum
	50	%	76	90	70	%	70	70	70	70	50	50	70	70
5: DGR5-583.40	60.5	6.69	3.31	3.15	8.65	1.14	3.29	0.41	0.13	0.10	0.01	0.01	12.4	99.8
6: DGR5-605.55	54.1	17.0	6.79	3.55	1.93	0.58	5.31	0.88	0.20	0.06	0.02	0.03	8.71	99.2
7: DGR5-645.16	57.0	16.6	6.47	3.23	1.25	0.63	4.94	0.91	0.23	0.04	0.01	0.03	7.78	99.1
8: DGR5-677.25	56.4	15.5	6.56	3.11	2.69	0.94	4.44	0.85	0.14	0.05	0.01	0.03	8.69	99.5
9: DGR5-692.35	53.2	16.1	6.64	2.92	4.09	0.50	4.66	0.85	0.33	0.05	< 0.01	0.03	9.76	99.2
10: DGR5-699.49	55.4	16.6	6.47	2.96	2.09	0.52	4.86	0.91	0.31	0.04	0.02	0.03	8.33	98.5
11: DGR5-704.99	4.15	1.16	0.55	0.75	51.6	0.08	0.42	0.06	0.18	< 0.01	< 0.01	< 0.01	40.3	99.3
12: DGR5-715.40	9.83	2.72	0.95	2.30	44.8	0.10	1.11	0.13	0.07	0.03	< 0.01	< 0.01	37.3	99.4
13: DGR5-725.33	6.56	1.70	0.64	1.43	48.8	0.08	0.72	0.07	0.05	0.02	< 0.01	< 0.01	39.3	99.4
14: DGR5-764.72	6.08	1.78	0.76	1.12	49.3	0.09	0.73	0.06	0.04	< 0.01	< 0.01	< 0.01	39.1	99.0

Chris Sullivan, B.Sc., C.Chem Project Specialist Environmental Services, Analytical

Copy: #1

Email: kraven@intera.com; rjackson@intera.com

Page 1 of 1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "findings") relate was (were) drawn and / or provided by the Chert or by a third perty acting at the Chert's direction. The Findings constitute no warranty of this sample(s) is a sample(s) in the "findings") relate was (were) drawn and / or provided by the chert or by a third perty acting at the Chert's direction. The Findings constitute no warranty of this sample(s) in the chert and are not intended for commercial or contractual settlement purposes. Any unsufficient adleration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be presecuted to the filest extent of the law. Test method information expansion of this document is unlawful and offenders may be presecuted to the filest extent of the law. Test method information argument.

SGS Minerals Services

December 21, 2009

Date Rec.: 19 November 2009 LR Report: CA11330-NOV09 Project: 06-219.35.10 Client Ref: Whole Rock Analysis

Intera Engineering Ltd.

Attn : Ken Raven

1 Raymond St., Suite 200, Ottawa Canada, K1R 1A2 Phone: (613) 232-2525 ext. 326, Fax:(613) 232-7149 Project: 06-219.35.10

June 4, 2010

 Date Rec. :
 21 May 2010

 LR Report:
 CA11208-MAY10

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis	Analysis	Analysis	Analysis	DGR5-583.40	DGR5-605.55	DGR5-645.16	DGR5-677.25
	Start Date	Start Time	Approval Date	Approval Time				
Total Carbon [%]	25-May-10	09:42	25-May-10	15:38	2.62	0.512	0.519	0.922
Total Organic Carbon [%]	26-May-10	15:07	27-May-10	07:46	0.123	0.111	0.280	0.335
Total Sulphur [%]	26-May-10	11:53	26-May-10	12:42	0.056	0.111	0.600	0.768
Carbon Dioxide [%]	27-May-10	15:06	28-May-10	11:57	9.46	1.51	0.97	2.39
Chloride [%]	02-Jun-10	02:08	04-Jun-10	09:01	1.37	0.90	0.69	0.93
Silver [µg/g]	27-May-10	21:37	31-May-10	12:59	0.22	< 0.01	0.03	0.01
Aluminum [µg/g]	27-May-10	14:10	28-May-10	08:25	33000	12000	86000	80000
Arsenic [µg/g]	27-May-10	21:37	31-May-10	12:59	3.0	5.9	5.1	4.6
Barium [µg/g]	27-May-10	14:10	28-May-10	08:25	220	400	340	320
Beryllium [µg/g]	27-May-10	14:10	28-May-10	08:25	0.4	2.3	2.0	1.8
Bismuth [µg/g]	27-May-10	21:37	31-May-10	12:59	< 0.09	0.10	0.23	0.15
Calcium [µg/g]	27-May-10	14:10	28-May-10	08:25	55000	12000	8100	18000
Cadmium [µg/g]	27-May-10	21:37	31-May-10	12:59	0.42	0.16	0.13	0.11
Cerium [µg/g]	27-May-10	21:37	31-May-10	12:59	49	33	93	87
Cobalt [µg/g]	27-May-10	21:37	31-May-10	12:59	7.3	17	17	14
Chromium [µg/g]	27-May-10	21:37	31-May-10	12:59	82	78	74	80
Copper [µg/g]	27-May-10	14:10	28-May-10	08:25	27	50	45	130
Cesium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.7	9.3	11	9.0
Dysprosium [µg/g]	27-May-10	21:37	31-May-10	12:59	4.8	2.5	4.9	4.7
Erbium [µg/g]	27-May-10	21:37	31-May-10	12:59	2.2	1.6	2.8	2.7
Europium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.4	0.60	1.3	1.2
Iron [µg/g]	27-May-10	14:10	28-May-10	08:25	22000	44000	43000	43000
Gallium [µg/g]	27-May-10	21:37	31-May-10	12:59	7.6	25	24	22
Gadolinium [µg/g]	27-May-10	21:37	31-May-10	12:59	5.8	2.4	6.0	5.4
Germanium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.1	1.3	1.8	1.8
Hafnium [µg/g]	27-May-10	21:37	31-May-10	12:59	3.2	3.5	4.2	3.9
Holmium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.00	0.62	1.1	1.1
Indium [µg/g]	27-May-10	21:37	31-May-10	12:59	0.09	0.09	0.07	0.08
Potassium [µg/g]	27-May-10	14:10	28-May-10	08:26	29000	35000	44000	39000
Lanthanum [µg/g]	27-May-10	21:37	31-May-10	12:59	20	13	46	44
Lithium [µg/g]	27-May-10	14:10	28-May-10	08:26	20	40	43	42
Lutetium [µg/g]	27-May-10	21:37	31-May-10	12:59	0.32	0.28	0.48	0.47
Magnesium [µg/g]	27-May-10	14:10	28-May-10	08:26	18000	7900	19000	18000
Manganese [µg/g]	27-May-10	14:10	28-May-10	08:26	880	590	450	480

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

LR Report : CA11208-MAY10

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Date	Analysis Start Time	Analysis Approval Date	Analysis Approval Time	DGR5-583.40	DGR5-605.55	DGR5-645.16	DGR5-677.25
Molybdenum [µg/g]	27-May-10	21:37	31-May-10	12:59	5.4	0.2	0.3	0.5
Niobium [µg/g]	27-May-10	21:37	31-May-10	12:59	10	15	18	16
Neodymium [µg/g]	27-May-10	21:37	31-May-10	12:59	30	16	40	37
Nickel [µg/g]	27-May-10	21:37	31-May-10	12:59	16	35	35	32
Total Phosphorus [µg/g]	27-May-10	14:10	28-May-10	08:26	560	660	930	560
Lead [µg/g]	27-May-10	21:37	31-May-10	12:59	4.4	4.4	11	12
Praseodymium [µg/g]	27-May-10	21:37	31-May-10	12:59	8.0	4.9	13	12
Rubidium [µg/g]	27-May-10	21:37	31-May-10	12:59	49	50	150	140
Antimony [µg/g]	27-May-10	21:37	31-May-10	12:59	< 0.8	< 0.8	< 0.8	< 0.8
Scandium [µg/g]	27-May-10	21:37	31-May-10	12:59	7.2	2.0	16	15
Samarium [µg/g]	27-May-10	21:37	31-May-10	12:59	6.5	3.2	7.5	6.5
Strontium [µg/g]	27-May-10	14:10	28-May-10	08:26	80	350	140	160
Tantalum [µg/g]	27-May-10	21:37	31-May-10	12:59	8.1	3.9	8.4	8.3
Terbium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.0	0.48	1.0	0.93
Thorium [µg/g]	27-May-10	21:37	31-May-10	12:59	6.0	0.81	19	17
Titanium [µg/g]	27-May-10	14:10	28-May-10	08:26	2300	5100	5600	5100
Thallium [µg/g]	27-May-10	21:37	31-May-10	12:59	0.25	0.69	0.76	0.69
Thulium [µg/g]	27-May-10	21:37	31-May-10	12:59	0.37	0.29	0.49	0.48
Uranium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.4	3.3	3.7	3.5
Vanadium [µg/g]	27-May-10	14:10	28-May-10	08:26	36	130	130	120
Tungsten [µg/g]	27-May-10	21:37	31-May-10	12:59	0.75	1.3	1.6	1.4
Ytterbium [µg/g]	27-May-10	21:37	31-May-10	12:59	1.9	1.7	2.8	2.7
Yttrium [µg/g]	27-May-10	21:37	31-May-10	12:59	23	4.3	22	21
Zinc [µg/g]	27-May-10	14:10	28-May-10	08:26	47	82	69	65
Zirconium [µg/g]	27-May-10	21:37	31-May-10	12:59	92	97	120	110

Chris Sullivan, B.Sc., C.Chem Project Specialist Environmental Services, Analytical

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Page 2 of 2

Intera Engineering Ltd.

Attn : Ken Raven

1 Raymond St., Suite 200, Ottawa Canada, K1R 1A2 Phone: (613) 232-2525 ext. 326, Fax:(613) 232-7149 Project: 06-219.35.10

June 4, 2010

 Date Rec. :
 21 May 2010

 LR Report:
 CA11208-MAY10

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	9:	10:	11:	12:	13:	14:
	DGR5-692.35	DGR5-699.49	DGR5-704.99	DGR-715.40	DGR5-725.33	DGR5-764.72
Total Carbon [%]	1.61	1.72	10.9	9.95	10.4	10.4
Total Organic Carbon [%]	0.812	1.38	1.98	0.502	0.142	0.308
Total Sulphur [%]	1.04	0.998	0.192	0.122	0.127	0.207
Carbon Dioxide [%]	3.21	1.62	39.5	35.9	37.9	38.0
Chloride [%]	0.52	0.40	0.03	0.10	0.07	0.07
Silver [µg/g]	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aluminum [µg/g]	81000	85000	5800	14000	8400	9100
Arsenic [µg/g]	5.0	4.5	1.8	1.4	1.8	1.0
Barium [µg/g]	570	340	27	63	37	32
Beryllium [µg/g]	2.0	2.1	0.2	0.3	0.2	0.2
Bismuth [µg/g]	0.18	0.23	< 0.09	< 0.09	< 0.09	< 0.09
Calcium [µg/g]	26000	13000	300000	280000	290000	290000
Cadmium [µg/g]	0.10	0.09	< 0.02	0.02	< 0.02	< 0.02
Cerium [µg/g]	92	87	15	20	18	17
Cobalt [µg/g]	16	16	2.8	2.0	1.9	3.5
Chromium [µg/g]	71	73	10	19	11	12
Copper [µg/g]	32	36	1.8	4.2	0.7	9.2
Cesium [µg/g]	9.4	9.9	2.5	1.8	1.5	1.4
Dysprosium [µg/g]	5.3	4.5	1.1	1.00	0.87	0.61
Erbium [µg/g]	3.0	2.7	0.57	0.57	0.46	0.31
Europium [µg/g]	1.5	1.2	0.26	0.28	0.24	0.20
lron [µg/g]	43000	42000	4000	6600	4400	5300
Gallium [µg/g]	23	24	1.6	3.6	2.2	2.4
Gadolinium [µg/g]	6.5	5.3	1.3	1.3	1.1	0.86
Germanium [µg/g]	2.0	1.9	0.3	0.4	0.4	0.4
Hafnium [µg/g]	3.5	3.6	0.7	0.9	0.7	0.5
Holmium [µg/g]	1.2	1.1	0.25	0.23	0.20	0.13
Indium [µg/g]	0.08	0.08	< 0.01	0.01	0.01	< 0.01
Potassium [µg/g]	40000	42000	4200	11000	7000	7300
Lanthanum [µg/g]	46	46	7.9	11	9.4	7.8
Lithium [µg/g]	40	42	1.9	4.3	2.8	2.4
Lutetium [µg/g]	0.49	0.49	0.080	0.088	0.072	0.048
Magnesium [µg/g]	17000	17000	4900	14000	8700	7100
Manganese [µg/g]	540	420	150	300	230	160

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis	9:	10:	11:	12:	13:	14:
	DGR5-692.35	DGR5-699.49	DGR5-704.99	DGR-715.40	DGR5-725.33	DGR5-764.72
Molybdenum [µg/g]	1.0	1.2	0.5	1.4	0.8	2.8
Niobium [µg/g]	15	16	5.0	6.3	5.0	4.1
Neodymium [µg/g]	41	37	7.3	8.2	7.6	6.6
Nickel [µg/g]	39	40	8.6	49	6.5	7.5
Total Phosphorus [µg/g]	1300	1300	800	320	220	190
Lead [µg/g]	24	24	4.7	3.2	3.3	4.4
Praseodymium [µg/g]	13	12	2.1	2.5	2.3	2.0
Rubidium [µg/g]	140	150	10	25	15	18
Antimony [µg/g]	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Scandium [µg/g]	16	16	2.4	3.3	2.7	2.7
Samarium [µg/g]	7.9	6.4	1.4	1.5	1.4	1.1
Strontium [µg/g]	340	120	480	310	290	570
Tantalum [µg/g]	8.6	8.2	14	15	17	16
Terbium [µg/g]	1.1	0.88	0.22	0.20	0.19	0.12
Thorium [µg/g]	17	18	1.2	3.3	1.9	1.8
Titanium [µg/g]	5100	5300	360	800	470	380
Thallium [µg/g]	0.92	0.95	0.05	0.08	0.04	0.04
Thulium [µg/g]	0.50	0.50	0.088	0.089	0.068	0.043
Uranium [µg/g]	3.7	4.2	1.1	1.3	0.88	0.40
Vanadium [µg/g]	120	130	8.6	19	12	7.2
Tungsten [µg/g]	1.5	1.6	0.15	0.30	0.19	0.10
Ytterbium [µg/g]	2.9	2.9	0.48	0.53	0.42	0.28
Yttrium [µg/g]	25	22	7.7	6.5	5.3	3.4
Zinc [µg/g]	67	62	6.0	12	13	6.5
Zirconium [µg/g]	95	100	12	24	16	13

Chris Sullivan, B.Sc., C.Chem Project Specialist Environmental Services, Analytical

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Page 2 of 2

APPENDIX B

SGS Report on SEM-EDS and XRD Mineralogy of DGR-6 Samples

SEM-EDS and XRD Mineralogy of

DGR6 SAMPLES

prepared for

Intera Engineering Limited

May 19, 2010

NOTE:

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Minerals Services. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and is not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Test method information available upon request.

SGS Canada Inc.

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 Tel: (705) 652-2000 Fax: (705) 652-6365 www.met.sgs.com www.ca.sgs.com

Member of the SGS Group (SGS SA)

Introduction

Eight samples from the DGR6, identified as DGR6-654.58, DGR6-664.31, DGR6-697.67, DGR6-717.97, DGR6-735.40, DGR6-750.80, DGR6-761.76 and DGR6-768.58 were submitted by Intera Engineering Limited for semi-quantitative XRD, whole rock analysis and SEM-EDS analysis. The objectives of the investigation were the estimation of different phases by XRD and SEM-EDS analysis of pore fabric and soluble minerals for the samples.

One polished section, prepared (Dry Preparation) from the cut slice of the above eight drill core samples was systematically scanned under scanning electron microscope with energy dispersive spectra for analysis of soluble minerals. X-ray powder diffraction analysis and whole rock analysis were carried out on the split grind samples

SGS LAKEFIELD RESEARCH LIMITED

Aparup Chattopadhyay, Ph.D., P. Geo. Senior Mineralogist

Roch Marion, B.Sc., C.Chem. Manager, Process Mineralogy

Experimental Work by: Elaine Glover – Sample Logging Amie Brock – Polished Section Preparation Kim Gibbs – SEM-EDS Anita Coppaway/Huyun Zhou – X-Ray Diffracrtion Anthony Bellis – Data Processing

Report Preparation by: Aparup Chattopadhyay

Testwork Summary

1. Sample Preparation

One polished section, prepared (Dry Preparation) from the cut slice of the above eight drill core samples. Representative sub-samples were split after grinding a cut slice for X-ray diffraction and chemical analysis from all the drill core samples (DGR6).

2. X-ray Powder Diffraction Analysis

XRD analysis results, listed in Appendix 1, showed that DGR6-654.58 sample was mainly composed of mica and quartz with minor amounts of potassium-feldspar, chlorite, ankerite, calcite, plagioclase, dolomite and pyrite and traces of palygorskite, anatase, apatite and halite; DGR6-664.31 sample was mainly composed of mica and quartz with minor amounts of potassium-feldspar, chlorite, ankerite, calcite, plagioclase and pyrite and traces of dolomite, palygorskite, anatase, apatite and halite; DGR6-697.67 sample was mainly composed of mica and quartz with minor amounts of potassium-feldspar, chlorite, calcite, plagioclase, palygorskite and pyrite and traces of ankerite, dolomite, anatase, apatite and halite; DGR6-717.97 sample was mainly composed of mica and quartz with minor amounts of potassium-feldspar, chlorite, calcite, pyrite, palygorskite and plagioclase, and traces of ankerite, anatase, dolomite, apatite and halite; DGR6-735.40 sample was mainly composed of mica and quartz with minor amounts of chlorite, calcite, potassium-feldspar, pyrite, ankerite, dolomite and plagioclase, and traces of palygorskite, anatase, apatite and halite; DGR6-750.80 sample was dominantly composed of calcite with minor amounts of dolomite, ankerite, quartz, mica and potassium-feldspar, and traces of plagioclase, pyrite and halite; DGR6-761.76 sample was dominantly composed of calcite with minor amounts of ankerite, dolomite, quartz, mica and potassium-feldspar, and

traces of chlorite, plagioclase, pyrite and halite; and DGR6-768.58 sample was dominantly composed of calcite with minor amounts of ankerite, mica, dolomite, quartz and potassium-feldspar, and traces of chlorite, plagioclase, pyrite and halite.

3. Scanning Electron Microscopy

The analysis of pore fabric and soluble minerals by SEM-EDS for the eight DGR6 core samples were carried out by Tescan Vega II SEM with Oxford Inca EDS/WDS system. The carbon coated polished sections (dry preparation) from DGR6 were scanned under the SEM-EDS system for semi-quantitative spot analysis for the study of the pore fabric and soluble minerals and the results were presented in Tables 1-43 and the back scattered scanning electron photographs in plates 1-43. Selected EDS spectra were tabulated in Appendix-2.

Irregular interconnected bands/veins of Na-Chloride (halite) were noted along the fracture or void spaces within silicates and carbonates (Plates 1-4) in DGR6-654.58 sample. Extensive interstitial cavity fillings zones of Na-Chloride (halite) and wide disseminated patches of halite were commonly noted in DGR6-664.31 (Plates 5 - 8). In DGR6-697.67 sample, irregular rims of Na-Chloride (halite) at the boundary of silicates and veins/disseminated patches of Na-Chloride (halite) within silicates were noted (Plates 9-12). In DGR6-717.97 sample, extensive interconnected bands and wide patches of Na-Chloride (halite) were noted within silicates groundmass and the results of the analysis were presented in Tables/Plates 13 - 16. Extensive interstitial cavity fillings zones of Na-Chloride (halite) and wide disseminated patches of halite were commonly noted in DGR6-735.40, DGR6-750.80, DGR6-761.76 and DGR6-768.58 samples, and the SEM-EDS results are presented in Tables/Plates 17 - 32

Sample:	DGR6 -	654.58		,	Element	Elements (in Wt.%)							
Spots	0	Na	Mg	AI	Si	S	CI	К	Ti	Fe			
1-1	46.86			9.29	30.92			12.93					
1-2	53.08				46.92								
1-3						54.80				45.20			
1-4	8.61	27.25	1.01	4.39	13.30		39.17	1.82	1.09	3.36			
1-5	7.01	33.61		2.88	8.69		46.58	1.23					
1-6	8.87	32.24		2.05	11.81		44.32	0.70					

Table 1: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Mica, Quartz and Pyrite

Plate 1: Back scattered scanning electron photographs indicating position of spots analysis in DGR6 - 654.58

	<u>``</u>											
Sample:	DGR6 -	654.58			Elements (in Wt.%)							
Spots	0	Na	Mg	Al	Si	CI	K	Са	Mn	Fe		
3-1	59.27		15.37					25.35				
3-2	56.55		9.38					25.65	1.18	7.24		
3-3	53.54				46.46							
3-4	6.81	28.18	0.78	4.48	11.42	42.17	2.45			3.71		
3-5	21.49	16.88	1.25	9.87	20.85	21.80	5.24			2.63		
3-6	26.30	16.32	1.78	9.11	19.14	19.90	4.12			3.34		

 Table 2: Results of Semi-Quantitative Spot Analysis in Na-Chloride,

 Ankerite and Quartz

Plate 2: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 - 654.58

Sample:	DGR6 -	654.58			Elements (in Wt.%)							
Spots	0	Na	Mg	Al	Si	S	Cl	K	Fe			
4-1	53.02				46.98							
4-2						54.92			45.08			
4-3	9.04	32.52	0.82	3.70	7.44		43.58	1.30	1.59			
4-4	10.27	31.73	0.96	3.71	6.56		43.69	1.44	1.63			
4-5					1.02	54.78			44.20			

Table 3: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz and Pyrite

position of spots analysis in DGR6 - 654.58

Sample:	DGR6 -	654.58			Elements (in Wt.%)						
Spots	0	Na	AI	Si	S	CI	K	Са	Fe		
6-1	3.06	39.88	0.44	0.70		55.91					
6-2		37.76		1.10		61.13					
6-3	5.83	33.20	3.20	6.09		49.85	1.83				
6-4					55.41				44.59		
6-5	53.50			46.50							
6-6	54.85							45.15			

Table 4: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz, Pvrite and Calcite

Plate 4: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 - 654.58

Sample	: DGR6 –	664.31		E	Elements (in Wt.%)							
Spots	0	Na	Mg	AI	Si	S	Cl	K	Са	Ti	Fe	
1-1						56.05					43.95	
1-2	55.65		9.74	0.63	1.37				25.36		7.24	
1-3	54.80				45.20							
1-4	2.36	34.22		3.18	6.26		51.66	2.31				
1-5		37.31		1.16	2.34		57.89		0.75	0.56		
1-6		38.79			0.49		60.71					
1-7		35.49	1.02	2.20	3.69		51.84				5.77	

Table 5: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Quartz, Ankerite and Pyrite

Plate 5: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 664.31

Sample:	DGR6 – 6	64.31		Ele	ments (in	Wt.%)			
Spots	0	Na	Mg	AI	Si	S	Cl	К	Fe
2-1	52.41				47.59				
2-2	5.86	29.92	1.47	5.66	9.13		40.70	2.13	5.14
2-3		37.40	0.56	0.81	1.71		57.46		2.06
2-4	3.85	35.36	1.02	2.45	3.74		50.15		3.43
2-5		36.29		0.56	6.74		56.41		
2-6	46.19	0.56		9.54	31.22			12.48	
2-7						54.42			45.58

Table 6: Results of Semi-Quantitative Spot Analysis in Na-Chloride,Quartz, Feldspar and Pyrite

Plate 6: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 664.31

Sample:	DGR6 -	- 664.31	Elements (in Wt.%)									
Spots	0	Na	Mg	AI	Si	Cl	K	Са				
4-1	56.85	0.94	0.56			0.62		41.04				
4-2	53.15				46.85							
4-3	3.28	33.55		0.95	1.90	60.32						
4-4	2.89	38.32		1.56	2.51	54.00	0.72					
4-5	2.75	34.62		0.63	1.93	60.06						
4-6		38.16				61.84						
4-7		35.73		0.63	1.70	61.94						

Table 7: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz and Calcite

Plate 7: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 664.31

	reuspai and Chiorne										
	Sample	DGR6 -	- 664.31		Elements (in Wt.%)						
Spots	0	Na	Mg	Al	Si	Cl	K	Fe			
5-1		38.0 0			1.52	59.39		1.09			
5-2		37.6 4		1.55	2.42	56.10	0.50	1.78			
5-3	4.06	32.6 4	0.69	3.09	7.04	49.24	1.74	1.51			
5-4		38.8 5			0.83	60.31					
5-5	5.57	35.0 0		1.37	3.06	54.24	0.76				
5-6	46.11		1.75	16.33	24.99	0.53	10.28				
5-7	51.15		5.38	11.89	12.30	0.45		18.84			

Table 8: Results of Semi-Quantitative Spot Analysis in Na-Chloride,Feldspar and Chlorite

Plate 8: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 664.31

Sample:	DGR6 –	697.67		E	lements (in Wt.%)				
Spots	0	Na	Mg	AI	Si	S	CI	K	Са	Fe
1-1	8.49	30.89	0.99	3.60	9.24		43.82	1.05		1.92
1-2		39.91			0.49		59.60			
1-3	3.61	38.10		0.77	1.85		55.67			
1-4		38.43		1.06	2.09		58.42			
1-5	7.00	38.08		1.18	2.55		51.19			
1-6		38.64		0.54	0.91		59.91			
1-7	5.04	36.02		1.31	2.66		54.95			
1-8		1.78			1.20	50.97	2.36			43.70
1-9	10.74	31.29		2.43	8.72		43.80	1.10	0.73	1.17

Table 9: Results of Semi-Quantitative Spot Analysis in Na-Chloride and Pyrite

Plate 9: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 697.67

Sample	: DGR6 -	- 697.67	Elements (in Wt.%)							
Spots	0	Na	Mg	AI	Si	S	CI	K	Са	Fe
3-1	52.44				47.56					
3-2	55.39								44.61	
3-3						55.19				44.81
3-4		36.66		1.13	1.39		60.82			
3-5		39.24			0.49		60.27			
3-6	3.86	35.71		1.35	1.35		57.73			
3-7	21.62	26.83	1.43	2.73	3.67		40.67	0.52		2.52

Table 10: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Calcite, Quartz and Pyrite

Plate 10: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 697.67
Sample	e: DGR6	- 697.67		Elements (in Wt.%)								
Spots	0	Na	Mg	Al Si S Cl K Fe								
4-1	52.72				47.28							
4-2	46.61			9.65	30.88			12.86				
4-3						54.69			45.31			
4-4	4.95	31.46		1.58	8.99		50.33		2.69			
4-5	3.08	39.94		0.80	1.06		55.13					
4-6	6.08	30.95		3.38	10.79		45.69	3.12				
4-7	3.22	37.38		1.53	2.64		54.58	0.66				
4-8	14.75	27.94	0.84	5.05	9.86		39.20	2.36				

Table 11: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Feldspar and Pyrite

Plate 11: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 697.67

Sample:	DGR6 –	697.67			Eleme	ents (in W	t.%)		
Spots	0	Na	AI	Si	S	CI	K	Ti	Fe
5-1	8.60	28.68	4.22	11.28		45.32	1.91		
5-2		2.33			53.26	1.75			42.66
5-3	44.59		9.72	32.15			13.54		
5-4	48.61	8.26	10.38	32.74					
5-5	5.11	36.63	1.17	2.70		53.81	0.57		
5-6	3.71	36.91	1.00	1.57		56.80			
5-7	15.04	27.20	1.47	17.73		38.03	0.54		
5-8	5.38	36.94	0.77	4.98		51.94			
5-9	9.96	32.80	2.17	5.40		47.24	0.92	1.51	

Table 12: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Feldspar and Pyrite

Plate 12: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 697.67

Sample:	DGR6 –	717.97	Elements (in Wt.%)								
Spots	0	Na	Mg	AI	Si	S	Cl	K	Fe		
1-1	53.61				46.39						
1-2						53.94			46.06		
1-3		37.15		1.06	2.65		58.49	0.65			
1-4	6.63	32.87		1.80	8.36		49.46	0.88			
1-5	18.68	20.20	3.59	9.08	10.09		20.85		17.52		
1-6	4.85	31.87		1.30	10.47		50.87	0.63			
1-7	4.81	34.53		1.87	7.74		49.92	1.12			
1-8		36.88		1.52	3.34		57.46	0.79			

Table 13: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz and Pyrite

Plate 13: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 717.97

Sample	: DGR6	- 717.97	,		Elem	ents (in W	/t.%)			
Spots	0	Na	Mg	AI	Si	S	CI	K	Са	Fe
2-1	46.05	0.65		9.49	31.53			12.28		
2-2	52.67				47.33					
2-3						55.49				44.51
2-4		37.15			0.71		62.14			
2-5		34.05		0.54	2.05		62.72	0.65		
2-6	6.39	31.24	0.98	4.74	7.76		43.01	1.98	1.56	2.33
2-7	13.07	28.51		1.11	17.61		39.69			
2-8		37.32		0.61	6.25		55.82			
2-9		37.66			0.44		61.89			
2-10		33.62		2.35	6.29		54.48	1.53		1.74

Table 14: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz, Feldspar and Pyrite

Plate 14: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 717.97

Sample	: DGR6	- 717.97			Elements (in Wt.%)						
Spots	0	Na	Mg	AI	Si	S	CI	K	Fe		
4-1						54.85			45.15		
4-2	52.91				47.09						
4-3	48.68	1.95		9.00 30.94 9.43							
4-4		37.08		1.44	3.28		56.39	0.75	1.06		
4-5	2.13	37.66		0.89	1.77		57.08	0.49			
4-6	4.07	35.51		2.40 5.45 51.05 1.52							
4-7	5.82	34.07	0.59	2.71	6.33		49.18	1.30			
4-8	5.05	34.70		2.53	6.22		49.99	1.52			

Table 15: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Quartz, Feldspar and Pyrite

Plate 15: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 717.97

Sample	: DGR6	- 717.97			Elemer	nts (in Wt.	%)		
Spots	0	Na	Mg	Al	Si	S	CI	K	Fe
5-1	52.32				47.68				
5-2	9.34	21.48	1.05	9.27	18.87		31.47	5.36	3.16
5-3		2.42			0.53	52.51	2.03		42.51
5-4						53.93			46.07
5-5	46.41		6.93	10.98	15.13			0.41	20.14
5-6	4.46	28.66	0.99	5.20	10.81		39.91	1.84	8.13
5-7	3.82	34.33		3.64	6.24		48.45	1.84	1.69
5-8	3.35	38.24	0.51	1.17	2.65		52.78	0.45	0.85
5-9	2.21	37.64		1.33	3.28		54.94	0.60	
5-10	2.44	38.84		1.28	2.82		54.17	0.44	

Table 16: Results of Semi-Quantitative Spot Analysis in Na-Chloride,
Quartz, Pyrite and Chlorite

Plate 16: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 717.97

Sample	: DGR6 –	735.40		E	ilements (i	n Wt.%)				
Spots	0	Na	Mg	AI	Si	S	CI	K	Са	Fe
2-1	55.84		10.27		1.35				27.32	5.21
2-2	50.07				39.96	5.07				4.90
2-3	16.58		2.25			42.90			4.03	34.25
2-4		34.52		1.39	5.90		57.41	0.78		
2-5	2.77	36.64		1.96	4.11		52.58	1.12	0.83	
2-6		38.24		1.52	2.83		57.41			
2-7	8.39	28.44		4.87	13.37		41.06	2.42		1.45
2-8		31.22		0.49	1.62		66.67			

Table 17: Results of Semi-Quantitative Spot Analysis in Na-Chloride
Quartz, Ankerite and Pyrite

Sample	: DGR6 –	735.40		E	Elements (in Wt.%)				
Spots	0	Na	Mg	AI	Si	S	CI	K	Са	Fe
3-1	53.31				46.69					
3-2	55.73		10.50						28.66	5.11
3-3		34.70			1.75		63.55			
3-4						54.65				45.35
3-5	2.91	31.44		2.38	7.16		53.88	0.93		1.30
3-6		37.67		0.52	1.09		60.72			
3-7	3.58	36.84		2.14	3.88		53.57			
3-8	3.49	36.56		1.87	3.95	0.89	51.55			1.69
3-9		36.87		2.13	3.48		56.76	0.76		
3-10		38.32		1.19	1.93		58.56			

Table 18: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Quartz, Ankerite and Pyrite

Plate 18: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 735.40

Sample	: DGR6 –	735.40		El							
Spots	0	Na	Mg	Mg Al Si Cl K Ca							
4-1	57.16				0.59			42.25			
4-2	56.98		11.56					25.71	5.76		
4-3		30.93		3.41	11.42	50.50	1.28		2.45		
4-4		32.51		0.93	2.55	64.01					
4-5		36.13		1.18	6.97	55.72					
4-6		38.95			1.24	59.81					
4-7		36.91			0.88	62.22					

Table 19: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Ankerite and Calcite

Site of Interest 4

Plate 19: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 735.40

Sample	: DGR6 –	735.40		E	lements (in Wt.%)					
Spots	0	Na	Mg	Al	Si	S	Cl	K	Са	Fe
5-1						53.56				46.44
5-2	56.14		12.53						25.99	5.35
5-3	46.92			9.24	31.11			12.72		
5-4		38.33		0.42	0.78		60.47			
5-5		40.04					59.96			
5-6		40.70			0.80		58.51			
5-7		38.40			0.50		61.09			
5-8		38.47		0.73	1.23		59.57			
5-9		38.00			0.61		61.40			

Table 20: Results of Semi-Quantitative Spot Analysis in Na-Chloride
Feldspar, Ankerite and Calcite

Plate 20: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 735.40

Sample	: DGR6 –	750.80		Elements (in Wt.%)							
Spots	0	Na	Mg	AI	Si	CI	K	Са			
1-1	56.88		13.92					29.20			
1-2	54.61							45.39			
1-3		35.37		2.12	3.94	55.41	1.43	1.73			
1-4		38.27				61.73					
1-5		31.87		2.37	9.68	50.82	3.86	1.41			
1-6	2.78	35.47		0.56	1.24	51.61		8.34			
1-7	2.32	37.77			0.99	58.92					

Table 21: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 21: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 750.80

Sample	: DGR6 -	- 750.80		Elements (in Wt.%)						
Spots	0	F	Na	Mg	Р	S	CI	Са		
3-1			38.47		1.15		58.88	1.50		
3-2	38.34	5.75	1.31		16.50	0.73	2.65	34.71		
3-3	58.15			13.99				27.86		
3-4	56.03			0.72				43.25		
3-5			36.57		0.71		61.35	1.36		
3-6			37.25				62.75			
3-7			34.98		3.84		53.22	7.95		
3-8			38.50				61.50			

Table 22: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite and Apatite

Plate 22: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 750.80

Sample	: DGR6 -	- 750.80	Elements (in Wt.%)				
Spots	0	Na	Si	CI	Са		
4-1	54.18				45.82		
4-2		38.31		61.69			
4-3		37.29	1.24	52.99	8.49		
4-4	4.12	32.23	0.83	47.10	15.72		
4-5		34.30	1.76	59.05	4.88		
4-6	3.00	37.83	0.72	56.74	1.72		

Table 23: Results of Semi-Quantitative Spot Analysis in Na-Chloride and Calcite

Plate 23: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 750.80

Sample	: DGR6	- 750.80			Eleme					
Spots	0	Na	Mg	AI	Si	S	Cl	K	Са	Fe
5-1		2.76				51.26	2.09			43.89
5-2	3.24	33.35		0.57	5.09		57.74			
5-3	56.76		16.60						26.65	
5-4	54.77		0.63						44.60	
5-5		32.96		0.82	3.23		56.52		6.47	
5-6	3.61	32.03		1.48	5.76		55.17	1.95		
5-7	2.91	39.58					56.87		0.64	
5-8	4.96	36.81			1.37		53.23		3.63	
5-9	2.94	33.74		0.74	1.97		59.73		0.87	
5-10		38.79			0.54		59.81		0.85	

Table 24: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite and Pyrite

Plate 24: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 750.80

Sample	: DGR6	- 761.76	3		Elements (in Wt.%)							
Spots	0	F	Na	Mg	AI	Si	P	S	Cl	K	Са	Fe
1-1	56.01			13.73							27.96	2.30
1-2	52.25					47.75						
1-3	55.95										44.05	
1-4	3.90		32.94		2.20	6.49			46.19	2.26	6.03	
1-5	3.72		38.06						58.22			
1-6	4.97		36.74		0.43	0.78			56.13		0.95	
1-7	23.60	5.90	9.56				15.17	0.83	9.04		35.90	
1-8	13.70	4.23	21.14				11.36		24.61		24.96	
1-9	20.11		15.91				14.22	0.93	16.37		32.45	
1-10	15.03		31.25		1.09	2.19			39.92	0.79	9.73	
1-11	17.00		30.50	0.61	0.65	1.39			35.97		13.88	

Table 25: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite, Quartz and Apatite

Sample	: DGR6	- 761.76		Elements (in Wt.%)						
Spots	0	Na	Mg	Al	Si	CI	Са			
2-1	5.72	34.61			1.07	43.42	15.18			
2-2		38.12			1.21	54.96	5.72			
2-3	9.69	33.55			0.87	44.63	11.26			
2-4	5.10	36.27			0.61	47.78	10.25			
2-5		37.90			0.64	60.09	1.37			
2-6		39.55			0.68	57.05	2.72			
2-7	4.55	35.59		0.75	1.07	46.30	11.74			
2-8	2.44	38.22		0.56	1.79	54.47	2.54			
2-9	7.47	33.52		0.72	1.31	44.85	12.13			
2-10		39.06				56.67	4.26			
2-11	57.38		13.58				29.04			
2-12	54.66		0.71				44.63			
2-13	4.77	35.08			0.79	56.04	3.32			

 Table 26: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 26: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 761.76

Sample	Sample: DGR6 – 761.76					Elements (in Wt.%)				
Spots	0	Na	Mg	Al	Si	S	Cl	K	Са	Fe
4-1		0.83				54.65				44.52
4-2	55.72		0.75						43.52	
4-3	56.83		13.11		0.65				26.91	2.50
4-4		36.91		0.65	1.86		57.72	0.58	2.29	
4-5		34.73			0.52		64.75			
4-6	15.60	27.39		2.07	5.71		32.77	1.02	15.44	
4-7	6.14	30.68	0.88	0.74	7.78		44.64		9.14	
4-8	3.49	37.74		0.50			56.22		2.05	

Table 27: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite and Pyrite

Plate 27: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 761.76

Sample	: DGR6	- 761.76		Elements (in Wt.%)				
Spots	0	Na	Al	Si	CI	К	Са	Ti
5-1	54.42						45.58	
5-2	52.15			47.85				
5-3		34.03	0.59	1.98	62.74	0.65		
5-4	5.33	32.82	2.48	5.77	48.14	1.89	3.58	
5-5	44.18						11.73	44.10
5-6		40.23		0.75	59.01			
5-7		36.26		1.46	59.62		2.66	
5-8	12.25	37.39			47.26		3.10	

Table 28: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Quartz, Anatase, and Pyrite

Plate 28: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 761.76

Sample	: DGR6	- 768.58			Elements (in Wt.%)					
Spots	0	Na	Mg	AI	Si	CI	K	Са		
1-1	53.62		0.72					45.66		
1-2	56.21		17.18					26.60		
1-3		37.63				62.37				
1-4	9.09	32.38		0.92	3.33	41.24		13.03		
1-5	3.89	40.42		0.48		55.21				
1-6	6.07	27.02		1.17	13.92	36.32	0.86	14.64		
1-7	14.97	30.56		2.80	6.23	39.83	1.18	4.43		
1-8		37.70		0.62	1.09	56.20		4.38		

Table 29: Results of Semi-Quantitative Spot Analysis in Na-Chloride,Calcite and Dolomite

Plate 29: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 768.58

Sample	: DGR6	- 768.58		Elements (in Wt.%)						
Spots	0	Na	Mg	AI	Si	Cl	Са			
2-1	54.21		0.75				45.04			
2-2	50.24	0.56			49.20					
2-3		39.66				60.34				
2-4	2.18	37.78				60.04				
2-5	2.55	38.75			0.92	57.78				
2-6		39.08				60.92				
2-7	3.13	39.07			0.61	57.19				
2-8		38.10				61.90				
2-9	2.82	39.92				56.73	0.54			
2-10	3.47	40.34				54.69	1.49			
2-11	8.63	36.97		0.55	1.65	51.59	0.61			

Table 30: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Quartz

Plate 30: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 768.58

Sample	: DGR6	- 768.5	8		Elements (in Wt.%)							
Spots	0	F	Na	Mg	Al	Si	Р	S	CI	K	Са	Fe
3-1	54.89										45.11	
3-2	57.39			14.26		1.31					27.05	
3-3	2.55		37.05			0.61			59.24		0.55	
3-4	29.46	5.89	7.32				14.77	0.69	8.77		33.10	
3-5	16.77	5.13	18.99				12.58		18.83		27.70	
3-6	6.52		29.44		4.85	8.35			42.53	3.15	5.16	
3-7								54.47			0.91	44.62
3-8	4.62		34.91		0.70	3.89			51.01		4.87	

Table 31: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite, Dolomite, Pyrite and Apatite

Plate 31: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 768.58

Sample	: DGR6	- 768.58			Elements (in Wt.%)				
Spots	0	Na	Mg	AI	Si	Cl	K	Са	
5-1	53.59							46.41	
5-2	57.24		15.11					27.65	
5-3	2.84	39.67			0.84	56.12		0.53	
5-4		37.22				62.78			
5-5	3.24	34.93		0.87	3.21	50.16		7.59	
5-6	7.26	28.26		2.80	9.13	35.47	2.60	14.47	

 Table 32: Results of Semi-Quantitative Spot Analysis in Na-Chloride, Calcite and Dolomite

Plate 32: Back scattered scanning electron photograph indicating position of spots analysis in DGR6 – 768.58

4. Comments

- 1. General Mineralogy by semi-quantitative XRD analysis and analysis of pore fabric and soluble minerals by SEM-EDS was carried out for all the eight DGR6 samples.
- 2. The first five samples (DGR6-654.58 to 735.40) were mainly composed of quartz and mica with minor amounts of potassium feldspar, chlorite, plagioclase, calcite, ankerite and pyrite, and traces of dolomite, apatite, anatase and halite.
- Calcite was the dominant mineral phase for last three samples (DGR6-750.80 to 768.58). Minor to traces of other carbonates (ankerite and dolomite), quartz, mica, feldspar, pyrite, chlorite and halite were also noted.
- 4. SEM-EDS study indicated presence of Na-Chloride (halite) in these eight samples.
- Na-Chloride (halite) mostly occurred as voids/cavity fillings interstitial materials mainly within silicates/carbonates groundmass in the form of irregular bands, veins/stringers and disseminated grains.
- 6. Irregular discontinuous rimmed halite along the boundary of silicates/carbonates was commonly noted.
- 7. Broadly interconnected bands/veins of halite were also noted within silicates and carbonates groundmass.
- 8. The irregular or sub-rounded grains and stringers of pyrite were commonly noted within silicates and carbonates matrix in most of the samples.

Appendix – 1: XRD Results

Summary of Semi-Quantitative X-ray Diffraction Results

Sample	Major	Moderate	Minor	Trace
	(>30% Wt)	(10% -30% Wt)	(2% -10% Wt)	(<2% Wt)
DRG6-654.58	mica, quartz	-	potassium feldspar, chlorite, ankerite, calcite, plagioclase, dolomite, pyrite	*palygorskite, *anatase, *apatite, *halite
DGR6-664.31	mica, quartz	-	potassium feldspar, chlorite, calcite, ankerite, pyrite, plagioclase	*dolomite, *palygorskite, *anatase, *apatite, *halite
DRG6-697-67	mica, quartz	-	potassium feldspar, chlorite, calcite, pyrite, plagioclase, palygorskite	*ankerite, *halite, *dolomite, *anatase, *apatite
DRG6-717.97	mica, quartz	-	potassium feldspar, chlorite, calcite, pyrite, palygorskite, plagioclase	*ankerite, *anatase, *dolomite, *apatite, *halite
DRG6-735.40	mica, quartz	-	chlorite, calcite, potassium feldspar, pyrite, ankerite, dolomite, plagioclase	*palygorskite, *anatase, *halite, *apatite
DRG6-750.80	calcite	-	dolomite, ankerite, quartz, mica, potassium feldspar	*plagioclase, *pyrite, *halite
DRG6-761.76	calcite	-	ankerit, quartz, dolomite, mica, potassium feldspar	*chlorite, *plagoclase, *pyrite, *halite
DRG6-768.58	calcite	-	ankerite, mica, quartz, dolomite, potassium feldspar	*chlorite, *plagioclase *pyrite, *halite

Crystalline Mineral Assemblage (relative proportions based on peak height)

* tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

Mineral	Composition
Anatase	TiO ₂
Ankerite	CaFe(CO ₃) ₂
Apatite	Ca ₅ (PO ₄) ₃ (F,Cl,OH)
Calcite	CaCO ₃
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Dolomite	CaMg(CO ₃) ₂
Halite	NaCl
Mica	K(Mg,Fe)Al ₂ Si ₃ AlO ₁₀ (OH) ₂
Palygorskite	(Mg,AI) ₂ Si ₄ O ₁₀ (OH)·4H ₂ O
Plagioclase	(NaSi,CaAI)AISi ₂ O ₈
Potassium Feldspar	KAISi ₃ O ₈
Pyrite	FeS ₂
Quartz	SiO ₂

Method Summary

Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 40 kV, 35 mA Regular Scanning: Step: 0.02°, Step time:0.2s, 20 range: 3-70°
Detection Limit :	0.5-2%. Strongly dependent on crystallinity.

Mineral Identification and Interpretation:

Mineral identification and interpretation involve matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the JCPDS-ICDD database and released on software as Powder Diffraction File (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds. Mineral proportions are based on relative peak heights and may be strongly influenced by crystallinity, structural group or preferred orientations. Interpretations and relative proportions should be accompanied by supporting petrographic and geochemical data (WRA, ICP-OES).

Semi-Quantitative Analysis:

The Semi-Quantitative analysis (RIR method) is performed based on each mineral's relative peak heights and of their respective I/Icor values, which are available from the PDF database. Mineral abundances for the bulk sample (in weight %) are generated by Bruker-EVA Software. These data are reconciled with a bulk chemistry (e.g. whole rock analysis including SiO₂, Al₂O₃, Na₂O, K₂O, CaO, MgO, Fe₂O₃, Cr₂O₃, MnO, TiO₂, P₂O₅, V₂O₅ or other chemical data).

Semi-Quantitative X-ray Diffraction Results					
Mineral	DRG6-654.58	DGR6-664.31	DRG6-697-67	DRG6-717.97	
	(wt %)	(wt %)	(wt %)	(wt %)	
Quartz	30.3	31.0	35.8	33.9	
Orthoclase	4.9	5.0	4.5	4.6	
Albite	3.2	2.6	2.4	2.4	
Clinochlore	4.6	4.7	4.2	4.3	
Muscovite	28.1	28.7	25.6	26.5	
Glauconite	12.9	13.2	15.2	15.7	
Palygorskite	1.5	1.5	2.2	2.5	
Calcite	3.3	3.4	2.9	4.2	
Ankerite	3.5	3.3	1.2	1.0	
Dolomite	2.8	1.7	0.9	0.5	
Hydroxylapatite	0.7	0.8	0.7	0.5	
Pyrite	2.6	2.7	2.4	2.5	
Anatase	1.0	1.0	0.9	1.0	
Halite	0.5	0.2	1.0	0.4	
TOTAL	99.9	99.8	99.9	100.0	

Mineral	DRG6-735.40	DRG6-750.80	DRG6-761.76	DRG6-768.58
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	32.6	3.6	4.5	3.3
Orthoclase	4.1	2.3	3.1	3.2
Albite	2.2	0.5	0.5	0.5
Clinochlore	5.4	-	1.7	1.7
Muscovite	29.5	3.4	3.3	3.4
Glauconite	10.2	-	-	-
Palygorskite	1.3	-	-	-
Calcite	5.3	74.7	77.2	79.6
Ankerite	2.3	6.9	5.5	5.0
Dolomite	2.3	7.7	3.4	2.5
Hydroxylapatite	0.1	-	-	-
Pyrite	3.7	0.5	0.5	0.5
Anatase	0.9	-	-	-
Halite	0.3	0.3	0.3	0.3
ΤΟΤΑΙ	100.2	99.9	100.0	100.0

14

DGR6- 654.58

Lin (Counts)

0

7

10

DGR6-664.31

$(i)_{0}^{1000}$ $(i)_$

•01-084-1302 (C) - Muscovite - KAl3Si3O10(OH)2

• 01-086-2334 (C) - Calcite - Ca(CO3)

• 00-002-0466 (D) - Glauconite - (K,Na)(Fe+3,Al,Mg)2(Si,Al)4O10(OH)2

401-079-1347 (C) - Ankerite - Ca.997(Mg.273Fe.676Mn.054)(CO3)2

▼00-029-0854 (D) - Clinochlore-2MIIb - Mg5Al(Si3Al)O10(OH)8

Lin (Counts) 0 7 10 20 30 Lin (Counts) 0 60 39 40 50 70 2-Theta - Scale DGR6- 697.67 - File: Apr5004-3.raw 01-074-1687 (C) - Dolomite - CaMg(CO3)2 Operations: X Offset 0.032 | Background 1.000,1.000 | Import **1**01-071-1680 (C) - Pyrite - FeS2 **0**1-079-1910 (C) - Quartz - SiO2 • 01-080-1094 (C) - Albite low - Na(AlSi3O8)

SGS Minerals Services

=01-071-0957 (C) - Orthoclase - K4Al4Si12O32

00-020-0688 (D) - Palygorskite - Mg5Si8O20(OH)2-8H2O

•01-086-1204 (C) - Hydroxylapatite (Cd-exchanged), syn - Ca3.6(Ca4.5Cd0.76)(PO4)6

101-071-1167 (C) - Anatase - TiO2

01-075-0306 (C) - Halite - NaCl

DGR6- 697.67

Lin (Counts) 0 7 10 20 30 Lin (Counts) 0 60 39 40 50 70 2-Theta - Scale DGR6- 717.97 - File: Apr5004-4.raw 01-074-1687 (C) - Dolomite - CaMg(CO3)2

MDGR6-717.97 - File: Apr5004-4.raw I 01-074-1687 (C) - Dolomite - CaMg(CO3)2 Operations: X Offset 0.024 | Background 1.000,1.000 | Import I 01-071-1680 (C) - Pyrite - FeS2 I 01-079-1910 (C) - Quartz - SiO2 I 01-080-1094 (C) - Albite low - Na(AlSi3O8) I 01-084-1302 (C) - Muscovite - KAl3Si3O10(OH)2 I 01-071-1680 (C) - Orthoclase - K4Al4Si12O32 I 01-079-0910 (C) - Quartz - SiO2 I 01-071-0957 (C) - Orthoclase - K4Al4Si12O32 I 01-070-092-0466 (D) - Glauconite - (K,Na)(Fe+3,Al,Mg)2(Si,Al)4O10(OH)2 I 01-071-1167 (C) - Anatase - TiO2 I 01-079-1347 (C) - Ankerite - Ca.997(Mg.273Fe.676Mn.054)(CO3)2 I 01-075-0306 (C) - Halite - NaCl I 01-086-2334 (C) - Calcite - Ca(CO3) I 00-020-0688 (D) - Palygorskite - Mg5Si8O20(OH)2·8H2O

•01-084-1302 (C) - Muscovite - KAl3Si3O10(OH)2

• 01-086-2334 (C) - Calcite - Ca(CO3)

• 00-002-0466 (D) - Glauconite - (K,Na)(Fe+3,Al,Mg)2(Si,Al)4O10(OH)2

401-079-1347 (C) - Ankerite - Ca.997(Mg.273Fe.676Mn.054)(CO3)2

▼00-029-0854 (D) - Clinochlore-2MIIb - Mg5Al(Si3Al)O10(OH)8

Lin (Counts) 0 10 20 30 6 Lin (Counts) 0 60 39 40 50 70 2-Theta - Scale DGR6- 735.40 - File: Apr5004-5.raw 01-074-1687 (C) - Dolomite - CaMg(CO3)2 Operations: Background 1.000,1.000 | Import **1**01-071-1680 (C) - Pyrite - FeS2 01-079-1910 (C) - Quartz - SiO2 • 01-080-1094 (C) - Albite low - Na(AlSi3O8)

DGR6-735.40

SGS Minerals Services

=01-071-0957 (C) - Orthoclase - K4Al4Si12O32

00-020-0688 (D) - Palygorskite - Mg5Si8O20(OH)2-8H2O

•01-086-1204 (C) - Hydroxylapatite (Cd-exchanged), syn - Ca3.6(Ca4.5Cd0.76)(PO4)6

101-071-1167 (C) - Anatase - TiO2

01-075-0306 (C) - Halite - NaCl

DGR6-750.80

▼01-074-1687 (C) - Dolomite - CaMg(CO3)2 ▼01-080-1094 (C) - Albite Iow - Na(AlSi3O8) ■01-071-0957 (C) - Orthoclase - K4Al4Si12O32

Lin (Counts) 0 6 10 20 30 Lin (Counts) - Marine Marine 0 60 50 39 40 70 2-Theta - Scale DGR6- 761.76 - File: Apr5004-7.raw ◆01-075-0306 (C) - Halite - NaCl Operations: Background 1.000,1.000 | Import **1**01-071-1680 (C) - Pyrite - FeS2 01-079-1910 (C) - Quartz - SiO2 ▼01-086-1385 (C) - Muscovite 2M1 - K0.86Al1.94(Al0.965Si2.895O10)((OH)1.744F0.2 • 01-072-1652 (C) - Calcite - CaCO3 101-087-2496 (C) - Clinochlore (IIb-4) - Mg4.882Fe0.22Al1.881Si2.96O10(OH)8 ▲ 00-041-0586 (*) - Ankerite - Ca(Fe0.3Mg0.7)(CO3)2

DGR6- 761.76

DGR6- 768.58
Appendix – 2: EDS Spectra

SGS Minerals Services

Appendix – 3: Whole Rock Analysis Data

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Intera Engineering Ltd. Attn : Ken Raven

1 Raymond St., Suite 200 Ottawa, Ontario K1R 1A2, Canada

Phone: (613) 232-2525 ext. 326 Fax:(613) 232-7149 May 18, 2010

Date Rec.: 12 May 2010 LR Report: CA11120-MAY10 Project: 06-219.35.10 Client Ref: Whole Rock Analysis Project#11925-002

CERTIFICATE OF ANALYSIS

Whole Rock Report

Sample ID	SiO2 %	Al2O3 %	Fe2O3 %	MgO %	CaO %	Na2O %
5: DGR6-654-58	52.9	16.0	6.78	3.68	3.34	0.42
6: DGR6-664-31	53.4	15.6	6.88	3.44	3.45	0.50
7: DGR6-697-67	55.9	15.8	6.45	3.09	2.19	0.88
8: DGR6-717-97	55.5	16.2	6.99	3.06	2.47	0.49
9: DGR6-735-40	53.3	15.9	6.78	3.30	4.34	0.43
10: DGR6-750-80	6.03	1.48	0.83	2.47	47.9	0.06
11: DGR6-761-76	9.21	2.62	0.89	1.91	45.1	0.08
12: DGR6-768-58	7.79	1.97	0.77	1.73	47.2	0.08

Sample ID	K20	TiO2	P2O5	MnO	Cr2O3	V2O5	LOI	Sum
	%	%	%	%	%	%	%	%
5: DGR6-654-58	4.93	0.86	0.21	0.10	0.01	0.02	9.43	98.7
6: DGR6-664-31	4.72	0.84	0.28	0.10	0.01	0.02	9.10	98.3
7: DGR6-697-67	4.70	0.89	0.16	0.07	0.02	0.02	8.49	98.6
8: DGR6-717-97	4.77	0.92	0.21	0.08	0.01	0.02	8.51	99.2
9: DGR6-735-40	4.74	0.86	0.36	0.08	0.01	0.02	9.80	100.0
10: DGR6-750-80	0.61	0.07	0.06	0.06	< 0.01	< 0.01	40.3	99.9
11: DGR6-761-76	1.06	0.13	0.08	0.03	< 0.01	< 0.01	38.0	99.1
12: DGR6-768-58	0.86	0.10	0.05	0.03	< 0.01	< 0.01	39.0	99.6

Chris Sullivan, B.Sc., C.Chem Project Specialist Environmental Services, Analytical

Intera Engineering Ltd.

Attn : Ken Raven

1 Raymond St., Suite 200, Ottawa Canada, K1R 1A2 Phone: (613) 232-2525 ext. 326, Fax:(613) 232-7149 Project : 06-219.35.10

May 20, 2010

Date Rec. :	12 May 2010
LR Report:	CA11083-MAY10
Reference:	Project#11925-002

#1

Copy:

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis	4: Analysis	5:	6: DCP6-664-31	7:	8:	9: DCP6-735-40	10: DCP6-750-80	11: DCP6-761-76	12: DCP6-768-58
	Approval Date	Approval Time	DGK0-034-30	DGK0-004-31	DGR0-097-07	DGR0-717-97	DGK0-733-40	DGK0-750-80	DGR0-701-70	DGR0-700-30
Total Carbon [%]	17-May-10	14:47	1.05	1.17	0.872	1.04	1.84	10.4	9.70	9.86
Total Organic Carbon [%]	18-May-10	14:16	0.211	0.333	0.426	0.565	0.791	0.612	0.192	0.351
Total Sulphur [%]	17-May-10	14:47	0.314	0.750	0.669	1.08	1.12	0.066	0.095	0.113
Carbon Dioxide [%]	19-May-10	15:32	3.15	3.15	1.69	1.92	3.61	37.8	35.1	35.8
Chloride [%]	20-May-10	10:38	0.61	0.58	0.90	0.51	0.43	0.06	0.09	0.08
Silver [g/t]	20-May-10	08:30	0.47	0.22	0.29	0.24	0.20	< 0.01	0.02	< 0.01
Aluminum [µg/g]	20-May-10	08:30	77000	7700	74000	77000	78000	7300	13000	9800
Arsenic [g/t]	20-May-10	08:30	5.3	4.8	3.1	4.4	4.8	1.3	1.5	1.7
Barium [µg/g]	20-May-10	08:30	310	300	320	320	320	36	57	48
Beryllium [µg/g]	20-May-10	08:30	2.0	1.9	1.8	1.9	2.0	0.2	0.4	0.2
Bismuth [g/t]	20-May-10	08:30	0.19	0.22	0.20	0.21	0.19	< 0.09	< 0.09	< 0.09
Calcium [µg/g]	20-May-10	08:30	21000	20000	13000	15000	26000	270000	270000	270000
Cadmium [g/t]	20-May-10	08:30	0.14	0.13	0.10	0.11	0.09	< 0.02	< 0.02	< 0.02
Cerium [g/t]	20-May-10	08:30	77	38	77	82	79	16	19	17
Cobalt [g/t]	20-May-10	08:30	16	15	15	15	14	1.6	2.2	1.8
Chromium [g/t]	20-May-10	08:30	70	77	71	71	69	13	18	14
Copper [µg/g]	20-May-10	08:30	29	21	60	40	26	1.5	2.5	0.7
Cesium [g/t]	20-May-10	08:30	8.7	5.9	8.7	8.8	8.8	1.0	1.9	1.4
Dysprosium [g/t]	20-May-10	08:30	4.5	2.7	4.4	4.5	4.8	0.95	1.0	0.84

Page 1 of 3

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Project : 06-219.35.10 LR Report : CA11083-MAY10

Analysis	3: Analysis Approval Date	4: Analysis Approval Time	5: DGR6-654-58	6: DGR6-664-31	7: DGR6-697-67	8: DGR6-717-97	9: DGR6-735-40	10: DGR6-750-80	11: DGR6-761-76	12: DGR6-768-58
Erbium [g/t]	20-May-10	08:30	2.8	1.7	2.7	2.8	3.0	0.55	0.63	0.47
Europium [g/t]	20-May-10	08:30	1.3	0.80	1.3	1.3	1.4	0.27	0.31	0.27
lron [µg/g]	20-May-10	08:30	43000	44000	41000	44000	43000	5200	5800	4900
Gallium [g/t]	20-May-10	08:30	23	22	22	23	22	1.8	3.4	2.5
Gadolinium [g/t]	20-May-10	08:30	5.5	3.0	5.2	5.3	5.8	1.2	1.3	1.1
Germanium [g/t]	20-May-10	08:30	1.1	0.8	1.0	1.1	1.2	0.3	< 0.3	0.3
Hafnium [g/t]	20-May-10	08:30	3.6	3.3	3.7	3.5	3.2	0.5	0.7	0.5
Holmium [g/t]	20-May-10	08:30	1.0	0.61	0.98	1.0	1.1	0.21	0.23	0.18
Indium [g/t]	20-May-10	08:30	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Potassium [µg/g]	20-May-10	08:30	42000	32000	40000	41000	40000	8800	14000	12000
Lanthanum [g/t]	20-May-10	08:30	38	15	37	42	41	8.3	10	8.1
Lithium [µg/g]	20-May-10	08:30	42	32	41	41	37	4.4	8.2	6.8
Lutetium [g/t]	20-May-10	08:30	0.42	0.23	0.42	0.44	0.46	0.072	0.090	0.064
Magnesium [µg/g]	20-May-10	08:30	16000	7300	17000	17000	18000	14000	11000	10000
Manganese [µg/g]	20-May-10	08:30	700	670	470	490	570	410	260	250
Molybdenum [g/t]	20-May-10	08:30	0.2	0.3	0.4	0.8	1.3	0.2	0.3	0.2
Niobium [g/t]	20-May-10	08:30	16	13	15	15	14	3.8	5.1	4.1
Neodymium [g/t]	20-May-10	08:30	33	19	32	34	35	6.8	7.7	6.7
Nickel [g/t]	20-May-10	08:30	33	34	34	36	37	6.2	8.6	5.9
Total Phosphorus [ug/g]	20-May-10	08:30	860	960	640	830	1400	290	340	220
Lead [g/t]	20-May-10	08:30	6.7	14	18	23	24	2.2	2.5	2.7
Praseodymium [g/t]	20-May-10	08:30	9.7	5.1	9.5	10	10	1.9	2.2	1.9
Rubidium [g/t]	20-May-10	08:30	160	42	150	160	160	17	31	23
Antimony [g/t]	20-May-10	08:30	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Scandium [g/t]	20-May-10	08:30	18	1.0	18	18	18	2.8	4.0	2.9
Samarium [g/t]	20-May-10	08:30	6.2	3.7	5.9	6.1	6.5	1.3	1.4	1.2
Strontium [µg/g]	20-May-10	08:30	140	130	180	130	140	330	320	310
Tantalum [g/t]	20-May-10	08:30	3.4	1.3	2.8	2.8	2.6	3.1	2.8	2.5
Terbium [g/t]	20-May-10	08:30	0.75	0.39	0.72	0.75	0.80	0.061	0.085	0.046
Thorium [g/t]	20-May-10	08:30	11	0.05	11	11	10	1.1	2.2	1.6
Titanium [µg/g]	20-May-10	08:30	5200	4700	5200	5300	4900	450	800	610
Thallium [g/t]	20-May-10	08:30	0.68	0.67	0.68	0.81	0.88	0.07	0.08	0.05
Thulium [g/t]	20-May-10	08:30	0.33	0.14	0.31	0.33	0.34	< 0.001	< 0.001	< 0.001
Uranium [g/t]	20-May-10	08:30	3.1	3.1	3.3	3.5	3.4	1.4	1.2	1.0

OnLine LIMS

Page 2 of 3

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

 Project :
 06-219.35.10

 LR Report :
 CA11083-MAY10

Analysis	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:
-	Analysis	Analysis	DGR6-654-58	DGR6-664-31	DGR6-697-67	DGR6-717-97	DGR6-735-40	DGR6-750-80	DGR6-761-76	DGR6-768-58
	Approval	Approval								
	Date	Time								
Vanadium [µg/g]	20-May-10	08:30	120	120	110	120	120	11	19	15
Tungsten [g/t]	20-May-10	08:30	1.5	1.4	1.4	1.4	1.5	0.26	0.32	0.25
Ytterbium [g/t]	20-May-10	08:30	2.6	1.5	2.6	2.8	2.8	0.45	0.57	0.42
Yttrium [g/t]	20-May-10	08:30	21	4.0	20	21	24	6.4	6.7	4.9
Zinc [µg/g]	20-May-10	08:30	71	73	63	62	58	4.5	7.1	5.2
Zirconium [g/t]	20-May-10	08:30	110	110	110	100	98	14	24	19

Chris Sullivan, B.Sc., C.Chem Project Specialist Environmental Services, Analytical

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at http://www.sgs.com/terms_and_conditions_service.htm. (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Page 3 of 3